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Projects Studied Under the Contract 

a,... irr^3reth:cond hau o£ the contract year (ja- «• ™* ■ W. 1973), the progr«, continued the following studies- 
speech analysis by linear prediction, reconstruction of mulU- 

dinensronal signals fro. projections, development of a high speed 
digital processor for speech synthesis, and the design of two- 

! rn 77^ digital £UterS-   TheSe Pr0^ots "* —«- 
a» a™     ^ Pa9eS- RePrintS 0f "^ble »*"""- 

of th.^ J1""3 and COnClUSions «ntained in this document are those 

Lnt,  '1' ^ 8hOUld n0t ^ "^^«ted as necessarily repre! 
senting the official policies, either expressed or implied' ^'the 
Advanced Research Projects Agency or the U.S. Governlnt. 

1. Speech Analysis by Linear Prediction 

Up to the present, most of the effort has been devoted to th. 

evelopnent of an interactive speech analysis system, „hicTi 

r IT:: rr hPast Di9itai processor-The -— ~" «based on the techmque of linear predictive analysis,  m this 
heme the combined effect of glottal source, vocal tract, a 

rad atxon losses is represented by a single .11-pou «^  In 
thrs way, spectral frames are constrained to have a fixed numh»  . 
resonant pea.s, which are located at the positio s o     TZZ 

rientrv:h
n:ionai :pooch anaiysis- -^s— - -oth : ey retain the  important information about the formant-      Tho  1-1, 

■system allows for the rapid and i„ter,...ctivn ana:;:; orsper1" 
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samples, and the convenient storage of the computed spectral frames. 

It is possible to mark and edit the data in flexible ways, and to 

compute and attach auxiliary calculations to the basic data.  Any 

of these computed parameters can be easily displayed and examined. 

The system will be used to createa very large data base of 

processed utterances for use in speech recognition research, which 

is the next phase of this project,  nisyllabic utterances of the 

form /hdCiVCV will be recorded for all possible Cx# C2 combina- 

tions, and for a wide range of the vowels V.  The goal will then 

be to describe the acoustic phonetic parameters of el in these 

utterances.  While there are many known contextual effects on the 

phonetic realization of sounds, it is felt that these are mini- 

mized for consonants in pre-stressed position.  Furthermore, 

stressed syllable nuclei are reliable anchor points at which to 

initiate phonemic recognition.  For these reasons, recognition of 

pre-stressed consonants can be expected to be at least as reliable 

as that of consonants in other positions, and hence a substantial 

effort toward their recognition is justified. 

We expect that this study will represent a comprehensive 

attack on this problem, leading to the creation of an exceptionally 

large data base, together with a wide range of techniques for 

consonant recognition and a critical evaluation of their capabilities. 

2.  Reconstruction of Multidimensional Signals from Projections 

In many applications, a set of projections of an N-dimensional 

object onto (N-l) dimensions are available from which it is possible 

to reconstruct the original object,  x-ray photographs, as obtained 

in medical applications and the inspection of mechanical systems, 

represent two-dimensional projections of the three-dimensional 

objects which have been X-rayod. A number of new results for this 

problem have been obtained by formulating the reconstruction problem 

directly in digital signal processing terms.  Based on this formula- 

tion, several algorithms have been developed which appear, based on 

several reconstruction examples, to bo superior to previous algorithms 
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in some cases.  Most of the reconstructions performed have been 

the transformation of one-dimensional projections to two-dimensional 

photographs.  A reconstruction of a section of leg bone from real 

x-ray data has also been performed.  This work has resulted in the 

completion of an Sc.D. thesis (R.M. Mcrserau; "Digital Reconstruc- 

tion of Multidimensional Signals from their Projections"), the 

abstract of which is attached.  Some of the algorithms are also 

summarized in the paper "The Digital Reconstruction of Multidimen- 

sional Signals from their Projections" by R.M. Merserau; Proc. 10th 

Annual Allerton Conference on Circuit and System Theory, Oct. 4-6, 

1972, Monticello, 111., pp. 326-334. 

Some preliminary investigations into the use of projections 

for picture bandwidth compression have also been completed, which 

have led to promising results.  If a function can be represented by 

its projections, then perhaps pictures can be transmitted or stored 

by utilizing a set of projections for these pictures, thus using 

fewer bits than are required for transmitting the entire, picture 

directly. These experiments are summarized in the doctoral thesis by 

Merserau. 

3.  Development of a Digital Processor for Speech Synthesis 

Detailed design of the "Black Box" processor has been completed. 

There have been two major changes in design, and several smaller ones 

as the specific logic has been developed.  First, a major decision 

has been made to build the processor from ECL 10k logic, rather 

than 74 series and Schottky TTL.  This change will increase the 

speed of the processor, but it should also result in greater system 

reliability.  It is our belief that with proper design precautions 

as currently understood, ECL systems should be more reliable and 

immune from noise problems than TTL systems.  The second major change 

has been an increase in data word length from 18 to 24 bits to per- 

mit retention of more significant figures.  The new multiplier will 

be 16 X 24, and should run in less than 100 nsec.  The memory uses 

1024X1 ECL chips which arc just now becoming available, and which 
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provide adequate storage at state-of-tho-art speeds. 

Large circuit boards have been ordered, and ECL parts will be 

ordered shortly.  The only remaining design problems concern the 

exact nature of the PDP-9 interface, which must now be modified to 

allow for 24-bit data words. 

An internal document, "The Black Bex", is attached which 

describes the design of the processor in detail. 

4.  Design of Two-Dimensional Recursive Digital Filters 

Recent work has been based on using the one-projection results 

of Merscrau to allow the inference of two-dimensional structures 

from their one-dimensional projections.  In this way, one-dimensional 

approximation theorems can be used to simplify the two-dimensional 

recursive approximation problem. The theory for the design of two- 

dimensional recursive filters whose magnitude-squared frequency 

response approximates a desired function is complete, and the 

algorithm has been programmed and is currently being debugged. 

There are, however, theoretical problems concerning the realizability 

of the designed filters.  These problems, which must be circumvented 

before the design algorithm can be considered complete, arc the focus 

of current effort. 

Additionally, a simple inverse filtering program was written 

using the FDP-Univac picture processing system developed last year. 

Digital photographs have been blurred by a recursive lowpass filter 

(taking approximately 10 seconds), and then reconstructed exactly 

using a non-recursive high-pass filter (taking approximately 5 

seconds). 
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Publications 

1. R.M. Merserau "Digital Reconstruction of Multidimensional 
Signals from their Projections" Sc.D. thesis, Dept. of 
Electrical Engineering, M.I.T., January 17, 1973. 

2. R.M. Merserau "The Digital Reconstruction of Multi-dimensional 
Signals from their Projections" Proc. 10th Annual Allerton 
Conference on Circuit and System Theory, Oct. 4-6, 1972, 
Monticello, 111., pp. 326-334. 

3. J. Allen, F.X. Carroll, E. Jensen "The Black Box" internal 
memorandum. 

4. A. V. Oppenheim and C. J. Weinstein, Effects of Finite Register Length 
in Digital Filtering and the Fast Fourier Transform (Proc. IEEE Vol. 60, 
No. 8, pp. 957-976, August 1972) 
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DIGITAL RECONSTRUCTION OF MULTIDIMENSIONAL 

SIGNALS FROM THEIR PROJECTIONS 

by 

Russell Manning Mersereau 

iT^l^im^TTV' Electrical ********  on January 17. 1073 
Science   fulflll-e^ of the requirements for the Degree of Doctor of 

ABSTRACT 

£ni f 80rJJ,,ms.for the reconstruction of multidimensional signals 

^Z T  "? •?* «•""«- from .ssveral sets of samples In F^ier 
space. A particular set of samples, the concentric squares raster Is 
tZ.Z'  thr ""-"""l-s from «hlch are suoerlo? ?o hose mlde 

detail^ ,thi%class °f unknow"« « «ingle projection is suff cicni  A 
sented anJ the^ifff 1M ««^"^^ reconstruction vroileTis  pre- 
sented and the difficulties associated with its solution are explored! 
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THE DIGITAL RECONSTRUCTION OF MULTIDIMENSIONAL SIGNALS FROM THEIR 
FROJECTIONS. 

RUSSELL M. MERSEREAU 

Research Laboratory of Electronics 
Massachusetts Institute of Technology 
Cambridge, Massachusetts 02139 

ABSTRACT 
Several algorithms for approximating a multidimensional density 

function in terms of its projections ("x-ray photographs") at 
different orientations are presented. This is accomplished by 
means of a theorem which states that the Fourier transform of a 
projection of a function is a slice (central section) of the 
Fourier transform of that function. Special emphasis is given 
to bandllmlted functions as these are readily digitized. Some 
theorems are presented which state that bandllmlted functions 
of a certain class can be represented by a single projection. 

INTRODUCTION 
There are occasions when the structure of a three-dimensional object is 

unknown and desired but only two-dimensional projections of that object are 
available. A transmission x-ray photograph might represent such a projection. 
A single x-ray photograph, since it is merely a two-dimensional representa- 
tion of an Inherently three-dimensional structure, does not contain all of 
the information that a physician might want, since «11 detail in a direction 
normal to the photographic plate has ?een superimposed. .One solution to 
this dilemma is to take X-ray photographs from different vantage points and 
use this set of x-rays to recreate a three-dimensional image, say in a 
digital computer. In this paper we will consider several techniques for ac- 
complishing this. In addition to performing reconstruction from x-rays [4] 
[5][7][8], these algorithms are useful for reconstructing from electron 
micrographs [2][3], fan-beam radio telescope scans [1] and line responses 
from linear shift-invariant optical systems. 

Because these algorithms will be implemented on a digital computer, we 
are constrained to work with sampled data. Our input projections must be 
sampled and our output reconstruction will consist of samples of the unknown 
structure. As a result this problem is best considered as an inherently 
digital one. This constrains us somewhat by limiting the class of signals 
that can be reconstructed, but this is not a serious concern since most sig- 
nals that arise in practice can be closely approximated by signals from this 
restricted class. On the other hand, by constraining ourselves to this one 
class of signals, we have developed some extremely powerful algorithms and 
Interesting results. 

THE GENERAL RECONSTRUCTION ALGORITHM 
Up to this point we have assumed that projection functions are simply the 

mathematical equivalents of x-ray photographs or electron micrographs. To 
understand the problem more fully we must make that definition more precise. 
Let us assume that one unknown signal can be described by an extinction 
function f(x,y,z) and that an x-ray photograph is made of the unknown by a 
uniform, collimated x-ray beam with intensity I0 which propagates parallel 
to the y-axis. Then, Ignoring scattering effects, the observed Intensity 
Variation of the x-ray photograph can be described by: 

I(x,s) - I0 exp{ -/ f(x,ylz) dy) (1) 

We can then define the projection function associated with this orientation 
by 

■aiAtUMauaJLa --*-—■'-■"■-"■*'-''     - — - ■ 
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Po(x.«)    -   -ln[ii2jii.]    - jf'fU.y.z) dy (2) 

Th« fuactlon of f(x,y,r) might measure the density of the unknown as It does 
to some extent In the case of x-rays or It might measure the extent of 
staining of a specimen In the case of electron micrographs, etc. 

To generalize eq. (2), let us assume that each projection Is taken normal 
to the a-axls and that the projection plane, the u-a plane, meets the x-x 
plane at an angle 8. With this notation, eq. (2) corresponds to the projec- 
tion at angle 8-0°. We shall define the projection at angle 6 by 

m 

pe(u,z) - / f(ucose - vslne, uslne + vcosB, x)dv        (3) 

" ^VJVV l8 the Kurier transform of f(x,y,2), and If we define a 
plane, the «-«plane to Intersect the Ujrmt  plane at an angle ♦, then we 
can further define the slice of F(u.x,WytWz) at angle * to be F(ucos*,u.sln*. 
**' i    'J.*       

pCwx.Wyf«z) corresponds to the function evaluated on 
a pla.:e, which includes the wr axis, and which is specified by a single 
angular parameter. These relationships are illustrated in Pig. 1. 

|heorem: (projection/slice theorem) The projection of f(x,y,x) at angle 
6 to the x-x plane is the Fourier tiansform of the slice of F(WxfUv,u,) 
at angle 6 to the UX-ü)Z plane. v-xt-y»^ 

Prsof: Let us define a coordinate system, the w,i,« coordinate system, 
which is a rotation by 6 (radians) about the Mg Wll? of the (-„«„,«, 
coordinate system. x y* * 

u - wvcose + w sine x    y 
« - Mx8lne + M COS8 

Then since 
■ • • 

F^^y^j) m f    ;    f    f(x,y,r) exp(-j[xw_+y«üv+«w,]) dxdydz 
-• -• -«• *  /  * 

(4) 

(5) 

we can write 

F(u,u,w ) z 
F("x.«y»wz) 

Since 

F(uco8e,uslne,u ) 
■ 

II!  f(x,y,z) exp(-j[xwcose + ywsine 

- xusinO + yucosS + z« )J dxdydz .  (6) z 
"   •   • 

Fd-^,^)    'III f(x.y,z) exp(-j[xwcose 
— —  H 

+• ywsine + zw 1) dxdydz (7) 
Z 

(8) 

by defining 

u    -    xcose + ysine 

v    - -xsine + ycose 

we can observe 

F((üCose,W8lne,Wz)    -    FO-.O,^)    -f    fjf    f(ucose-vsine, usine+vcose. 

x)dvjexp{-J(u«irt-zut)) dudz      (9) 

"    /    /pfl(u,z) exp{-J(uurt-zu),)} dudz 
-m  m.m     v ■ 

(10) 
Q.E.D 

—5      1 
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m SLfü1!! t0™ the ba8i8 for 0ur "construction algorithms.    First 
we obtain as an Input a set of projections  (say fro« processed x-ravs)      It 

ilve^flnTL"J/I ^rV" a11 taken n0ra-1 t0 • «ingle LawSh we' 
ÜüJÜ^f    !. T"1" ^ OUr coordin-te ■y"««.  although this is not 
IrlllfoZ   hi-      P'0JeJtion/«llce ^eore« can be generalized.    Then we 
lllZJT       !! Projections, by low pass filtering the»,  sampling them and 
Shrj^lfr'J18^"6 F0;ri!r tran8f0rn (Drr) "iculatlin.   mZ ZZum* 
Id   T      t K

tran"for,M of the "t of projections provide us with samples of 
litl^ll^Ll^l ^/^ ProJection/»"ce theorem.    From these^ can' 
tn th~! Ä      .   re ^"'u" 8p<ICe and then ^ inve"e Fourier transforming 
1 reconLJu^    ^i ? "^ ^ e8tinUlte of f<x.y.«).  or.  In our termColSgy. 
JlH and W J^'K      <  '^ ProJectlon8 «• needed,  how tuey should be sam^ 
!l?c.f^        /        0U!ier ap*Ce 8h0uld be estimated from samples of the slices depend upon the Individual algorithms. 

SPECIFIC RECONSTRUCTION ALGORITHMS 
Let us assume that the functions to be reconstructed are bandllmlted 

^r:T ^iii 8uarirM that 8l1 of the *•*••"£ m£SS^ 
StT.y        J^ ,Ur U8 t0 CO,Bput' Fourler transforms from samples of the 
«^ loHl«    ,u; ^"o* information. . necessity for perforSng a recon- 
!«?«    ?    "«it'^y-    Al8o for our arguments let us assume that we are 
l7onll nr0WMatrUCt^tWrdi,Mn8i0nal function  (picture)  from one-dlmen- 
lil^ of z! l8 i8 equiv<llent t0 reconstructing for only a single 

kn^e
n?^r0aC? t0 U8e '? 0btaln 8,mple8 of the Fourier transform of an un- known picture is to sample ea-h projection at the same sampling rate,  th^ 

H then ^Lr!^81 thaVhe Urimin NyqUl8t »*• of each •« the projections. 
if.hi    ^K    r 8Tence of ""Pie- i» Fourier transformed using s DFT algo- 
InoUr rLlar'or Sü'^L?! 1**** *ictXiTe ^^ ^U be knoJn on a polar raster of points.    If the projections were evenly spaced from 0 to 

ill ? there
0frint8 K18 thf 8hOWn in Fl8-  2(a)-    Fro» 'hese sarnies at 

CrlK^L a nU1"ber of techniques that can be used to estimate f(x.y). 
One of the more successful that we have used Is to use linear lnte«olatlon 

POI" i™!es F^w^yon a carte8i8n (8qu«e> s.STsrsr 5?«!I füf^L Fr0IB the Cartesian raster we can perform an Inverse two- 
dimensional DFT to obtain our estimate.    Another approach that has yielded 

inteer^^r1008 Ä a POlar ra8ter l8 t0 Wri" the averse traisJor^ integral in polar coordinates, 
I  • • • 

F(x»y) u   "fiP   f f  F(«.8) exp{j(xuco8e + ywsine)}« dude        (n) 

and then approximate (11) by a sum. where eactr summand depends upon one of 
the polar samples. The latter technique performs well resolving detS! but 
iTAJlVn"  0i area8 0f l0W infor»-tlon content, such as backgrounds or 
„111   u    3 a!ly C°n8tant 8rey level- The interpolation technique, on the 
Tl^tt ÄLfSu?opp08ite- u re'olve8 tha flat -2 *d- 

As an alternative to sampling each projection at the same ssmpling rate 
we can vary the sampling rate with the projection angle.    In particular 

SnSllÄ!   ^^'^"f T* Wlthin
1
a r^"8 ln the ^equen y dJLln such that F(ttx,0 5 0    for  |a.    >w   or    L    >w .    Then the bandwidth of the 

projection at angle 6 is defined by y «owiatn or tne 

K.   - w 

8       —{|co.e |. |sme|} (12) 

1 

Mi—fcA^^^^i...^-^^..^.-—  .. ^     ^ .    ~ J    _^ .  



Now suppose we sample each projection at a sampling rate which Is propor- 
tional to Its bandwidth. If these sequences are then DFT'd, P(a) ,uy) will 
be known on a concentric square raster such as that In Fig. 2(b). At first 
glance such a set of points Is not to be favored over the polar set, but 
such Is not the case. Using both the Interpolation algorithm and the 
integral approximation algorithm, we get better reconstructions from the 
concentric squares raster than from the polar one. One reason for this can 
be seen from the fact that the Cartesian raster of samples which we must 
have In order to perform an Inverse DFT lie along the same horizontal and 
vertical lines as the sides of the concentric squares. Thus Instead of 
the necessity of performing a two-dimensional linear Interpolation, we only 
need to perform a one-dlmensi?nal one. This might be expected to produce 
less error. 

The second advantage to a concentric squares raster becomes apparent 
when we confider a special class of signals. We have assumed that f(x,y) 
Is bandllmlted. Let us now assume that It can be represented In the form 

N-l N-l 

m-C n-0    ■ »*' 

8lnW(x- 4 slnw(y- ^) 
 ü  

*ix-f-)iy-f) 
(13> 

Thus in addition to requiring that f(x,y) be bandllmlted, we have required 
that when sampled at its Nyquist rate it have only a finite number of non- 
«ero samples. The number N which represents the width of the square of 
non-zero samples we will refer to as the order of f(x,y). Bandllmlted 
functions of finite order are completely specified by their DFT's and their 
Fourier transforms are two-dimensional polynomials of degree N-l in each 
variable.  Because of the fact that a one-dimensional polynomial of degree 
d is completely specified .»y d+1 independent samples, it can be proven that 
a bandllmlted function of order N can be reconstructed exactly from N+l 
projections (although not necessarily for all sets of N+l projections). 
Thus for this class of functions, concentric square projections as these 
projections shall be called, assume theoretical importance. 

In Fig. 3 is shown a reconstruction of a cross section of a leg bone 
from 36 concentric squares projections. The projections were sections of 
x-rays which were taken at 5° intervals which are scanned logarithmically. 
Each section of each x-ray consisted of 256 samples and the reconstruction 
is plotted on a 256x256 Cartesian raster. 

RECONSTRUCTING FROM ONE PROJECTION 
In the previous section we noticed that bandllmlted functions of finite 

order could be reconstructed exactly from N+l (concentric squares) projec- 
tions, where N was the order of the function. ' Is this the minimum number 
of projections needed to reconstruct these functions? The answer to this 
question is no. In fact, functions of this form can be reconstructed from 
a single projection. 

Theorem; (one projection theorem) A bandllmlted function f(r.y) of 
order N in each variable can be reconstructed from the concentric 
squares projection at 6 - tan~l(l/N). 

Proof; Consider the slice at 6 - tan'^l/N). 

F(ucose,btsinO)  - F ( uN 

•N2 + 1  /N2 + 1 
) (14) 

where 

O 
I 
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N-l    N-l 
FK.wv>    -      I        ^    fr»l • HI) exp(-J( lirm^vj]) bint(Uwtu,v) 

m-O    n-0      •        W x' y 

where 

H      x WW    x'  y 
(15) 

VW    x* y' 

Evaluating (14), 

F( 
uN 

1  .     1^1  1W,   |ü)y|  iw 

0  ,    otherwise 

N-l K-l 
.-~=)-      I      I    «*•* expHC 

ITU) 

/P+r   /N^+T 

If we define g(Nnrfn)  - 

m-0 n-0 W vrfP+I 
[Nnr+n])}        (16) 

ui <.§ ^i5+r 

F( 
uN u 

f(—. —),  then (16) becomes 
W      W 

N-l 

^52+1      /JJJ+i 
)    - I    g(p) exp(-J-^E-).     Ml|i«^ 

p-o w^J+r 
(17) 

otherwise 

Thus ovet the region of Interest, the slice at 6 - tan~'-(l/N)   (which can 
be obtained from one projection)  Is a one-dimensional polynomial 01 degree 
N2-l in the variable exp{-J (ira»/w/N2+l)),    and the coefficients of that 
polynomial are simply the picture samples arranged column by column.    Thus 
knowledge of N2 sample values specifies the picture samples and by (13) 
this specifies the unknown picture function. 

Q.E.D. 

This theorem also has implications in two-dimensional filter defxgn for 
it implies that the frequency response of a two-dimensional non-recursive 
digital filter is specified by its values along a single radial line, 
although how this fact might be utilized in filter design is still not 
clearly understood. 

Despite the beauty of the one-projection theorem, it is not particularly 
useful as a reconstruction technique on a finite precision machine, because 
for values of N larger than 4 or 5, solving eq. (17) for {f(mir/W, nv/N)} 
requires the Inversion of a large nearly singular matrix and any errors 
made in obtaining the slice samples, which are bound to occur, are amplified 
enormously. In this respect, applying the one projection theorem IP much 
like trying to apply analytic continuation to an unknown function all of 
whose derivations are known at a single point. 

From a theoretical viewpoint, it is interesting to ask if there are any 
other of these critical slices. Clearly not all slices will work; for ex- 
ample, knowledge of sample values along just the ux or u» axis is generally 
not sufficient. In face, there are an infinite number 01 these critical 
slices. A necessary and sufficient condition for a slice with a rational 
slope to be a critical slice is given In the following theorem which will 
be stated without proof. 

Theorem; Tf a slice has an angle tan"1(A/B) where A and B are 
integers with no common factor, then a necessary and sufficient 
condition for this slice to be sufficient for reconstruction of 
a bandllmited function of order N is that the equation 

Bm + An - Em* + An'  ,  0 <^ m^.m' ^ £ N-l 

•"■■- ■■ ■ iri.M^lln.11   ..ni 
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possess only the trivial solution a - a* 
n - n« 

In particular, if N is a power of two and A is an odd integer, the 
•lice with slope tan-l(A/N) is critical. 

Using techniques completely analogous to that by which we derived the 
one projection theorem, we can derive two projection theorems, four pro- 
jection theorems, etc. As a rule of thumb, the greater the number of pro- 
jections which we care to use, the easier it is to obtain a solution with 
real data. It generally takes about N/2 projections for the sensitivity to 
be reduced enough to use currently available machines. 

SUMMARY 
A number of algorithms have been presented for reconstructing multi- 

dimensional signals from their projections, such as x-rays. In addition to 
their uses in performing reconstructions', projection functions are poten- 
tially useful for characterizing multidimensional signals for purposes of 
pattern recognition or bandwidth compression for signal transmission. Uses 
'for projections in these areas has not been explored. 
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Figure 2 — The samples of F((üx,«y) that can be obtained by (a) sampling 8 
projections all at the same rate, (b) sampling each of 8 projections at a 
rate proportional to its bandwidth. 
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THE BLACK BOX 

being a 

small, fast, inexpensive 

digital processor 

designed mainly for 

speech synthesis 

but nicely suited 

for 

myriad other tasks 

J. Allen 

F.X. Carroll 

E. Jensen 

This document contains a detailed description 
of the proposed Black Box.  Readers are asked 
to comment freely and quickly so we can proceed 
with construction. 
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The Black Box 

1.  Introduction.  In this paper, we will describe a new computer 

having several unusual design features.  The original motivation 

for this design was the need for a real-time all-digital speech 

synthesizer.  Since the vocal tract model to be simulated is 

complicated (see Fig. 1, due to D.H. Klatt), it was necessary 

to adopt several features which optimize these calculations in 

time.  The heart of the computer is a very fast multiplier 

(18 X 18 in about 100 nsec).  No instruction overlap is used, 

but instructions have a three-address format, so that (for example) 

A-B -* C is done in one instruction, including the two loads and 

one deposit.  Each instruction contains an op-code plus these 

three addresses, as well as a jump address for the next instruc- 

tion, so that no program counter is needed. There is a separate instruction 

memory of 44-bit width, and two data memories, each of 18-bit 

width.  It should be noted that no special registers are provided. 

There is no accumulator, no program counter, and the machine 

status word, as well as the direct memory access word count and 

addresses are kept in memory, so that they can always be inspected 

by the program. Very little timing is needed internal to an 

instruction, since the multiplier is combinatorial, ind shifting 

is accomplished via multiplexing.  This results in a fairly simple 

control structure, most of the complication arising from I/O 

considerations.  The computer is desiqned to be interfaced to a 

host PDP-9 machine, and will probably not be used in a stand-alone 

mode, although this is possible.  Direct memory access transfers 

are possible in either direction between the PDP-9 and any memory 

location in the black box at a 1 megacycle rate.  In addition, 

transfers to and from the PDP-9 accumulator and any black box 

location are possible.  PDP-9 IOT instructions can be used to 

control various control bits in the black box.  Finally, part of 

the data memorv is paralleled, so that it  is possible to compute 

using one parameter set, while a new set is being loaded (trans- 

parently to the blacK  box proqram) from the PDP-9.  In this paper. 

-^ 
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we present several examples to show the utility of this device 

for other specialized tasks, including display processing, 

floating point calculations, and FPT's.  The basic design goal 

has been to achieve a powerful, fast, yet inexpensive processor, 

but with little consideration given to ease of programming. 

2.  Architecture.  Figure 2 shows a rough block diagram of the 

computer.  Three components can be recognized. 

U  Instruction processor:  Includes a 256 X 44-bit 

instruction memoty, loadable directly from the host machine; 

an instruction register; instruction addressing; skip logic; 

and instruction decoding. 

2)  Data processor;  Includes 

a)  Two data memories, X + Y, each 256 X 18, and 

each having some of its locations paralled by 

additional memory locations. 

Three processing units: 

1. Multiply unit, performs X.Y+Z 

2. Arithmetic-Logical Unit (ALU), performs 

adds, subtracts, and logical operations. 

3. DIT test, performs skip on a selected 

bit of a given word and provides for 

modification of that bit. 

Data Select:  Selects desired output from pro- 

cessing unit, with capability to incorporate shifts, 

b) 

c) 

3)  Ineut^Output Processor; provides programmed and DMA 

transfers with the host computer. 

Fi?ure 3 shows a mor*  detailed block diagram, which is 
intended to relate to the further detailed discussion. 

3.  Instruction processor;  Instructions are 44 bits long, and 

cannot be modified within the black box except that the effective 

address of all address fields can be modified by index rogistcrp, 

or an instruction may be skipped.  The host computer, hewever, 

has access to the 256-location instruction memory so that 

inytructions may be updcitod at any time 

-.. < 
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by Input transfers into the black box. There is no program counter, 

so that each instruction contains a jump address to the next instruc- 

tion.  This jump address can be modified by indexing or by ORing into 

its LSB the OR of the following 3 conditions» 

1) Data Select output ■ zero 
2) -   ••      "    negative 

3) one bit selected by BIT instruction. 

There are five classes of instructions. 

block of features:       r  

4-  . 2- .   5      7-8      I 

All five have a common 

—r- ßH" OL^i     S.VnW-io 

I 
V 

or S«c.».l X D T 1 
The only variations in this format over the entire group of 

instructions are the length of the x-address field (8 or 9 bits) 

and the specifics of the HY or special" field, which is either the 

Y-address (in double-source instructions) or the specifier of 

actions peculiar to certain single-source instructions.  We first 

describe the common features (i.e. everything but the "Y or special" 

field): 

There are 4 index registers located in 1)  Index control: 

the X memory 

X-Address 

11, 

12 

14 

L8 

8 

Register 

xY 
x„ 

8 

Action 

modifies Y-addrcss 
X-  " 

■ D-   ■ 
■ Jump ■ 

The 4 indox bits control the ORing of these registers into 

their respactivo address registers.  The use of ORing, as 

opposed to adding, simplifies the logic and increases the 

speed of indexing at very little cost in programming conveni- 

ence.  In single-argument and BIT instructions, the Y index 
bit in ignored. 

--,-•* *■ ;#• 
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2)  Skip bits; There are always two possible skips associated 

with each instruction. 

N skip on data select output negative 

Z skip •  •   •     »  . Zero 

Placing I's in these fields enables the skips, which cause 

a 1 to be ORed into the jump address LSB if the designated 

skip condition is met. 

1 

3) Op Code;  The op code is 5 bits long.  Detailed explan- 

ations are given below. 

4) X-address.  in double-source instructions, this is an 

8-bit address in the X-memory.  In single-source instruc- 

tions, the 9 bits designate a location in X or Y memory. 

If the MSB is 0, the X-memory is addressed, and if it is a 

1, the Y-memory is addressed. 

5) D-address;  This is the 9 bit destination address, 

i.e. where the result of an instruction is stored.  When 

the memory is in the serial mode, the result can be stored 

in any X- or Y-location, but when the memory is in parallel 

mode, the result is stored in the analagcus locations, 

specified by the 8 least significant bits, in both memories. 
i 

This last situation is violated in input transfers, discussed 
below. 

6) Jump Address;  8-bit address of next instruction. 

This block of features ig augmented in different ways to form 
the five instruction classes; 

I)  D^ub^^jur^o^n^tructiqns:  The X and Y fields are both 

8 bits long, and each specify « source loco^on in their 

roftpootive mbnoriofi« Beu Figure 4. Tho ror.ult is stored 

in D, and the next instruction taken from J. 

11)  Wttlttply.l  X and Y are ü-bit source addresses, and a 

third source Is always implied, namely the Z-reyister, whil-h 

J-    1 ■-■■■"• ■ 
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is location 10g in the x-memory.  See Figure 5. Note that 

Z is always cleared before a deposit is made, so that it 

vill either be properly updated when D ■ Z, or set to zero 
to proviue only the X-Y function.  The op-code contains 

a 3-bit scaling field, and the 8 possible options are shown 

in Figure 5. 

III) Index Register Modification Instructions; These 

look like an ADO instruction in that the contents of the 

twc source addresses are added and stored in the destina- 

tion address, except that the result is also stored in the 

index register referred to by the instruction.  See Figure 6. 

There are 4 index instructions, one for each index register. 

IV) BIT instruction;  The X-field is 9 bits long so that 

any X or Y location can be used as source.  The remaining 

(special) field of 7 bits is divided into a 5-bit select 

field and a 2-bit modification field.  See Figure 7.  The 

select field specifies which of the 18 bits of a data word 

is to be examined.  If this bit is a 1, it is ORed into the 

LSB of the jump address.  The modification field can then 

affect this bit in any of 4 ways, shown in the figure. 

A,-itionally, after this modification is made, the usual 

skip tests can be performed on the resultant data word. 

V) Single-Source Instructions;  Here, the X-addrcss field 

is 9 bits long, and the remaining 7 bits is used to specify 

shifts and rotates as shown in Figure 8.  Thus both source 

and destination can be any address in X or Y. 

The instruction processor has the following paths to the 

rest of the machine: 

a)  Index bits:  cause index roqistcrs to bo. ORed 

into the corresponding address registers 

-s~ 
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b) Skip bits:  cause outputs from s'-rlp tt sts to be 

ORed into the jump address 

c) Op code including "special" field when present: 

goes to instruction decoder, then to 

instruction execution control in the 

data processor. 

d) Source and destination addresses:  routed to 

respective data memory address registers. 

e) Jump address: routed to instruction address 

register. 

4. Addressing  Figure 9 shows the complete address soace, both as 

seen internally and by the host computer.  Note that 

1) To the host machine 

a) the X *■ Y memories are one 512-register memory, 
locations 0-777 

b) each instruction memory location is mapped onto 

4 host computer 18-bit words, so that 4X256 ■ 1024 
host memory words are needed to represent the instruc- 

tion memory.  These are locations 2000-3777 of the 

overall address space. 

2) The top 408 locations of the Y memory can be switched 

between two separate physical memories.  More on this below, 

3) The bottom 15g locations of the X memory are special 

registers, which can be accessed directly in addition to 
the normal X-addressing. 

«  • 
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5.  Data Processor; As mentioned above, there are 3 units in the 

data processor: 

a)  X ■» Y data memories; These are 256 X 18-bit memories, 

which can run in one of 2 modes selected by a control bit 

in Word O of the x-memory. 

1) Serial; This mode logically places the X and Y 

memories end-to-end. X is the bottom 256 locations, 

and Y the top 256 locations.  Thus, in this mode, all 

deposits and single-source-instruction loads have access 

to all 512 locations. Additionally, the I/O instruc- 

tion (which is a single-source instruction) can access 

all 512 locations in this mode. Of course, double- 

source instructions access both X + Y separately and 

simultaneously. 

2) Parallel;  Source loads are unaffected by this 

mode, but deposits qo to analogous locations in both 

X 4- Y memories.  In the following diagram, the case 

of the shadow memory in parallel mode is shown.  When 

the shadow mode and parallel mode are both selected, 

input and output transfers within th« shadow memory 

range go to/from that memory which is selected 

\rM\Ae. 1 W»Au*>*i UfCrt.1 

Y 

•»**.— 

X 

l~ ' " *~ ~    "'\ 

Urti-ii^M      (  iru'i     IAVIS i ( rt'^)    A. vi ~vw,«'.••-^, >*'' 

■'\ 
•uu v»> t >-w 

as the I/O shadow memory at tho time of the transfer, 

and np-wboro elso«  It ir. .in though tlio other part of 

the parallel transfer wont to a (nnn-oxistont) X 

shadow.  Thus, in qoneral, cvon in tho parallel mode, 

the contents of X & Y v/ithin the shadow ranqe will not 

M*M -■'-   ' •  -■-  .'^V ;.. . 
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agree, and this is desirable.  Switching of the shadow 

memories only effects which of the two is currently 

local to the black box Y memory, and which is used 

for I/O.  (See below) 

The X memory has its bottom 15g registers used for special 

purposes, as shown in Figure 10.  These registers can be used just 

like any other memory register, but in addition, registers 4-14 

have special direct output lines, and registers 0-3 have direct 

input and output lines to the host computer. Additionally, loca- 

tions 1, 2, 3, and 7 are counters. All of these special registers 

«re treated in detail below.  Word 0 is the control register, and 

is also given special treatment. 

The Y memory has its top 3210 registers duplicated by a 

"shadow" memory.  (See Figure 3)  When the shadow mode is off, the 

Y memorv is a straightforward 256 X 18 memory.  But when the shadow 

mode is on, a bit in the control register selects which of the two 

memories will accommodate local loads and deposits within this 

address range,  i/o with the host computer, however, will utilize 

that memory not so selected, and this is done automatically.  This 

feature was provided to allow for a parameter memory, one part of 

which could be used for local computing, while the other is being 
updated by the host computer. 

b)  Processing Units;  Within the data processor, there I 

are three processing units, specialized by function. 

1)  Multiply As described in Figure 5, this unit 

performs X-Y+Z.  z is supplied by register 10 of the 

X memory, and is always used in the calculation.  An 

18X18 array multiplier perform full 2's complement 

multiplication, together with the Z add, in about 

100 nsec.  All scalings are done in the data select 
unit. 

-J^.f • ^ r f • ^ r——  
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2) Arithmetic-Logical Unit (ALU)  This is a processor 

accepting X 4 Y inputs and performing adds, subtracts, 

and logical operations,  it is realized in 748181^ 

and is used for all instructions except multiply. 

3) Bit test (BIT) This unit selects one among the 

18 bits of a data word, and connects it to the jump 

address skip logic. Thus, the selected bit is Ored 

into the LSB of the jump address. The selected bit 

can also be modified, as shown in Figure 7, and this 
is accomplished in the ALU. 

O  Data Select: This unit is a large multiplexor, capablo 

of gating any one of  >  18-bit words through the unit. 

These words include input transfers, multiplier scalings, 

and ALU shifts and rotates.  Note that all shifting is done 

by multiplexing, so that no shift register or counter is 
required. 

Skip tests for negative and zero are made at the output of 

the data selector, and all results are held in a latch, 

while the destination address is set up, before they are 
stored. 

6- Input/Output Processor: This processor handles ell I/o trans- 
fers with the host computer. As shown in Figure 9, the host 

machine has access to all memory locations in the Mack box. The 

I/O processor accomplishes each transfer by executing a one-instruo- 

tion interrupt (see below), which is transparent to the currently 

runnxng program. This is the only interrupt facility in the black 

box. Transfers may take place in either direction, and are of two 
types. 

a)  AC^transfors.  when the PDP-9 is tho host, transform to 

and from its AC can bo made under host I/o control.  Thus 

these transfers can only bo originated from the host machine. 

--   1      s* 
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b)  DMA transfers.  DMA transfers (up to a 5 megejycle rate) 

can be initiated by either machine.  The required special 

registers are in the x-memory. 

X-Location        Use 

1 Host DMA address 

2 Local DMA address 

3 Word count 

Note that, all three of these registers are counters. 

The details of these transfers are as follows:  (IOT refers to host 

I/O control instructions). 

a) AC transfers (LOC refers to an arbitrary black box data 

location) 

1. PDP-9 AC —♦ DB LOC 
a) IOT puts BB address into BB X2> via input 

buffer register (IBR) 

b) IOT puts data in IBR, and causes interrupt to 

transfer data to LOC 

2. BB LOC -♦ PDP-9 AC 
a) IOT puts BB address into BB X-, and then 

causes C(X2) to be loaded into Output Buffer 

Register (OBR) 

b) IOT calls for data from OBR —^ AC 

b) DMA transfers 

1. PDP-9 DMA to BB 

a) IOT host starting address to X. 

b) IOT black box starting address to X» 

c) IOT word count to X. 

d) IOT to initiate transfer:  direction of transfer 

and shadow mode control arc also specified. 

2. 3B to PDP-9 DMA 

This is similar to the above, except for direction 

of transfer. 

3. DMA transfers can also be initiated directly within 

the black box, since all those special registers, 

and the DMA control flags are within the X-memory. 

Obviously, these registers can be inspected at any 

time. 

.'• 
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The I/O instruction, executed during «-.he I/O interrupt, is a 

somewhat specialized MOVE (See Figure 8). Thus it has 9-bit 

source and destination addresses. 

a) Input LOG is in the DMA BB Address register (X memory 

word 2); data select from Input Buffer register is enabled, 

and a MOVE takes place from LOG to LOG. Thus the initial 

contents of LOG are placed on the X-bus, but the outputs 

of the data processors are not gated through data select. 

In this way, the initial contents of LOG are lost, and the 

Input transfer only uses the "store" part of the MOVE 

instruction. 

b) output LOG is in the DMA BB Address register.  A MOVE 

from LOG to LOG is executed, and the output of the data selector 

(the contents of LOG) is also placed in the Output Buffer 
Register (OBR). 

7.  Special Registers. As previously mentioned, the bottom 158 

locations of the X data memory are special, in that they are more 

than plain memory locations.  Some have special input and/or output 

lines, and may oven be counters.  The several subsets of these 

registers require special discussion. 

a) 11-148. These are the 4 index rocristers. The index 

instructions (Figure 6) store into them as well as the 

designated destination address.  The outputs of these 

registers are ORod into their respective address fields if 

gated by I'n in the respective index control bits of the 

instruction being executed.  These registers are not counters. 

All index incrementing must be performed explicitly. 

b) 10g.  This is the Z-rogister.  Its output linos are 

permanently connected to the multiplier, so that a multiply 

instruction always adds the contents of Z to X-Y to form 

the output of the multipHor. 

c) 6^7  These arc the Clock and Count rogir.ters. 

-« A* ' ; ♦■ 
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respectively.  Normally the clock Interval is in the clock 

register.  This count is automatically jammed into the count 

register when the latter goes to 0 from -1. This condition 

is equivalent to the transition to 0 being coupled with a 

carry out of the MSB. Thus no jamming takes place when 0 is 

deposited into the count register.  Each time the desired inter- 

val is jammed into the count register, a pulse is generated 

for external use. The count register is also constructed 

so that it cannot count beyond 0.  If a periodic output 

pulse is desired, merely set the desired period in the clock 

register, and the count registar will generate output pulses 

at the period interval repeatedly.  An external clock supplies 

the pulse train for the count register.  Any existing .count 

can be overridden at any time by simple depositing into the 

count register.  This scheme, of course, also provides for 

changes from one period to another, by merely updating the 

clock register at the appropriate time, i.e. before the 

current period expires. Also, it is clear that no special 

instructions are needed for those operations. 

d) 4-5 Those are the Output Registers.  Their outputs 

are brought directly (buffered, of course) to rear-panel 

connectors.  The intont is to connect D/A converts to these 

outputs. 

e) 1-3 These are the DMA address and word registers. 

Location 1 contains the host computer current address, 

location 2 the local (black box) current address, and loca- 

tion 3 the present word count.  This last location generates 

a pulse on the transition from -1 to 0 for use in supplying 

an interrupt to the host computer.  All three registers 
are counters. 

H —  

- — 



-13- 

f) 0 This is the Control Register. Its individual bits 

are employed as follows: (no significance is attached to 
the order.} 

1'  C* bit) Run/Halt.  DMA will still transfer during 
Halt. 

2. (1)  Link.  This flag is set on carry out of the 

MSB during ADD or SUB.  There are corresponding 

instructions which provide ADD with Link and SUB 

with Link. 

3. (1)  Overflow.  This flag is set on overflow during 

ADD and SUB (and possibly on some multiplier outputs) 

It can be reset only by program control (using BIT). 

4. (2)  Shadow.  One bit turns the shadow mode on, so 

that I/O transfers use the memory not selected, and 

the other bit selects which physical shadow memory 

is used by the BB for local computation. 

^  ^  Series/ParallGl.  In the serial mode, deposits 

are made to one of 512 locations in X or Y, whereas 

in parallel mode deposits go to two locations, one 

in each of X and Y.  (Note comments above concern-" 

ing I/O in parallel mode within the shadow address 
range). 

6.  (3)  DMA There are 3 control bits 

a) Start.  Resets when transfer is done, and 

initiates interrupt (when enabled) 

to the host computer when done. 
b) Direction. 

Into or out of the Black Dox 

c) Interrupt Enable. 

Enable flag allows Black box to 

interrupt host computer when DMA 

transfer is done. 
7-  (1)  Plock:  Thin is an onabln fK.r. which allows the 

counter-register --» 0 condition to interrupt til« 
host computer. 

ktta«Hi^fe - -   - •  ..■■.- 
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8. (l)  Program Interrupt» This is a general flag 

which can be used to interrupt the host computer 

for any reason. 
9. (i)  program Interrupt Enable.  Provides overall 

control of all interrupts from the Black Box to 

the host computer. 

Items 1-9 above account for 12 bits, so there are still 6 bits left 

which can be used for flags or other purposes. 

8.  Front panel;  The front panel will have two sets of switches 

and corresponding lights. One set is 18 bits long for data or 

instructions.  The other set is 12 bits long and specifits the 

address for a location.  Coupled with DEPOSIT and EXAMINE keys, it 

is thus possible to examine and change any location in any memory 

while the computer is halted. This process will, however, destroy 

the previous contents of register 2 of the X-memory (Black Box 

DMA address), since this location is used to specify the black box 

address of all I/O transfers. 
In addition to the DEPOSIT and EXAMINE keys, START, STOP, 

CONTINUE, and SINGLE STEP will be provided, as well as EXAMINE 

NEXT and DEPOSIT NEXT.  The address for the first instruction to 

be executed following START is located in register 2 of the X-memory 

Additional display lights will include the Instruction 

Register (IR) , Input Buffer Rec>stor (IBR) , and Output Buffer 

Register (OBR). 

9.  Miscollanoous 

a) Timing:  It is anticipated that all instructions 

except multiply will take 200 nsec, and multiply will 

require 300 nsoc.  These are conservative figures and, 

as more packages become available in Schottky TTL, will 

probably be revised downward. 

b) Size:  Wo expect that the entire processor will require 

5 1/4" rack heiqht.  About 300-400 IC's will be required 

(the multiplier alone requires 100 74Slöl's). 

:... .-v:. . 
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10.  Progranuning Examples:  In this section we show several programs, 

ranging from the straightforward to the spectacularly obscure, which 

illustrate design features of the machine. 

a. Complex multiplication; 

C i ** 

Initially, let X and Y index registers contain N and L respectively, 

and the D index register contain M.  The result is to go in loc- 

ations M and M+l.  Therefore, initially, we have; 

/ 00 -* T 

f     [AIA  be) -* f^M 

1 ■ | 

KJ - - - ^ 

u & .—       —.    -      - Vi»» -  -    Vj 

u^x -«i 

\ 

C^VAV-T rA^L *;^i   S 

PAVAL. **,'^ 

TA^L- «k ^t^ 

nuu ^1; *^ ^ 

^Q 
A 00 i-S vJ   ^   ^  1 

' 

Note:  "*" means enable index reqister for indicated field. "*l" 

1 ORed with the appropriate index regisver. 
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b. Second Order Difference Equation: The second order diff- 

erence equation, 

may be implemented by setting aside two storage locations: Yl for 

y     and Y2 for y _, , and performing the following sequence; 
n—1 n—« 

T 4 ^"O.-v-* *** 

which is coded as. 

I 

Clearly, a coefficient C other than unity for xn can be handled 

simplv by replacing the first MOVE by a MUL  ( MUL C, X, 10 ). 

It should be noted that at the end of the sequence, the Z register 

(the addition entry port to the multiplier) has been cleared 

since the last multiply didn't store in it. 

c. Sum and Difference of Two Buffers: For convenience, we 

assume the four buffers start at locations 1, 101, 201, and 301, 

and that the length N of the buffers is ■ 100.  Also, Ai and Bi 

can be in "overlapping" X and Y locations, and the Sum and Diff- 

erence could be both in X or both in Y, or both in both X and Y. 

I 

■--« ■■-■ - • ;.. 
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\o\ 

7o| 

0. if Vfcvcc 

UP 

PüVAJtJ 

IWO^XV C^^   C«   y   12-,   O^K)       /   f*i   *  i 

^Aü\i£ 

Note: DOWN must be an even location in the Instruction Memory. 

«.     Stack Manipulation:     In  this example,   PUSH JUMP and POP 

RETURN are realized.     The subroutine S is  assumed  to have an 

associated stack SSTACK    and stack pointer SPOINT. 

TT» 
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e.  Bit-reversed Counter; Given a register, COUNT, containing 

a number to be incremented in bit reversed order, and another reg- 

ister, WHERE, containing the number of the bit position (LSB=0) 

at which the count should start: 

L iMMt i 
«MMU 
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The following program works because In single-source instructions, 

If the Y Index control bit Is 1, the Y index register will be ORed 

with the bits of the instruction which are in the same position as 

the 8-bit Y address of double-source instructions: 

ör 

4 % ^ 1 C n        i 
i y- Op   i*f CtCJL Y ^ D       |     7 

ti 

t »A X mm   hi 

KVWE I    ****Wj   >v 
/le^-sU,()  ^HW« ^^ 

^ o*^ ,A 

f 
y «,/vÄ»!»- ftettlMr 

^\TC   *  C^v^T  to^oT ufcP / ^^A, T-4 i^^.^d b.^ 

KV«!«' I  ^.A 

BITC  (test bit and complement it ) will okip until the counting 

operation is complete.  Thus LOOP is the even location reached on 

counting done, and LOOP+1 contains the instruction that steps the 

-Z  —T 
--. 
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test bit loaation to the right,  aid jumps to the BITC test of the 

new selected bit. 

f.     Division;    The following mnemonics are assumed: 

MOVLO    shift in Ones  from the right,  and shift out through 

the link 

MOVLZ    shift in Zeroes from the right,  and shift out through 

the link 

MOVL      rotate left through the link 

( By addition of one instruction to the routine   (preset the link), 

the requirements can be reduced to only the availability of MOVL.) 

The following is a routine for the positive integer divide of 

the double precision number   (A,B)   by C. 

DvvJ 

OogC 

t NT1^       OWU. 

\KKR 1: 
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Effects of Finite Register Length in Digital Filtering 

and the Fast Fourier TransForm 

ALAN V. OPPENHEIM, BENICW MKMHKK, EBBS, AND 
CUFFORO J. WEINSTEIN, MKMHIR, IKKK 

Imitnl Paper 

Abstract—When disital signal processing operations are imple- 
mented on a computer or with special-purpose hardware, errors and 
constraints due to finite word length are unavoidable. The main cate- 
gories of finite register length effects are errors due to A D conver- 
sion, errors due to roundoffs in the arithmetic, constraints on signal 
levels imposed by the need to prevent overflow, and quantization of 
system coefficients. The effects of finite register length on implemen- 
tations of linear recursive difference equation digital filters, and the 
fast Fourier transform (FFT), are discussed in some detail. For these 
algorithms, the differing quantization effects of fixed point, floating 
point, and block floating point arithmetic are examined and com- 
pared. 

The paper is intended primarily as a tutorial review of a subject 
which has received considerable attention over the past few years. 
The groundwork is set through a discussion of the relationship 
between the binary representation of numbers and truncation or 
rounding, and a formulation of a statistical model for arithmetic 
roundoff. The analyses presented here are intended to illustrate 
techniques of working with particular models. Results of previous 
work are discussed and summarized when appropriate. Some ex- 
amples are presented to indicate how the results developed for 
simple digital filters and the FFT can be applied to the analysis of 
more complicated systems which use these algorithms as building 
blocks. 

I.   iNiHODlCTION 

IN PRACTICE, digital signal proifssin« reqatlM the np- 
resentation of sequence values in a binary format with a 
finite register length. The effeet of the finite word-length 

constraint manifests itself in several different ways. It a se- 

quence to be processed is derived by sampling an analog 
waveform, then the finite word-length constraint requires 
tliat the analog-to-digital conversion produce only a finite 
number of values. This represents quantization of the input 
waveform. Even when we start with data representable with 
a finite word length, the result of processing will naturally 
lead to values requiring additional bits for their representa- 
tion. For example, a 6-bit data sample multiplied by a fc-bit 
coefficient results in a product which is 26 bits long. If in a re- 
cursive digital filter we do not quantize the result of arith- 
metic operations, the number of bits required will increase 
indefinitely, since after the first iteration 26 bits are required, 

after the second iteration 36 bits are required, etc. The effect 
of quantization in such a context depends on such factors as 

Manuscript recoived Miiy II. 1V72. A. V. OppcnliHm was supported 
in part by tlir National Science Koundation under GmM C.K-.M.VS,? and 
in part by the Advanced Research 1'roject Agency of the Department of 
Defense, monitored by ONK under Contract \fK:314-67-A-02U4-(K)64; 
C. J. Weinstein was supported in part by the U. S. Air Force. FMi invileil 
paper is one of a series planned on topics of general interest    The Editor. 

A. V. Oppenheim is with the Department of Electrical EnRineering 
and the Research Laboratory of Klectronics, Massachusetts Institute of 
Technology, Cambridge, Mass. 02I.W. 

C. J. Weinstein is with Lincoln Laboratory, Mass,' -liusetls Institute 
of Technology, Lexington, Mass. 02173. 

wlutlur we are cniiMdering tixed-pnint or tloating point arith- 
iintic, and whether for fixed-point arillimetii w« are UMhig a 
representation ol immbers in terms of fraction.-, or integers. 
Or perhaps a mixture. We will be treating tin- CMC of tixed- 
poinl aritliinelie and tloating-point arithnielic separately. 
For fixed-point .irillunetic, it is natural in ,. signal processing 
context to consider a register as represeating a fixed-point 
fraction. In this way the product of two numbers remains a 
fraction and the limited register length can be maintained by 
truncating or rounding the least significant bits. With this 

type of representation the result of addition on fixed-point 
fractions need not be truncated or rounded but it can increase 
in magnitude so that the sum eventually is not a fraction. 
This effect is commonly referred to as overflow, and can be 
handled by requiring that the input data be sufficiently small 
so that the possibility of overflow is avoided. In considering 
floating-point arithmetic, dynamic range considerations gen- 
erally can be neglected due to the large range of representable 
numbers but quantization is introduced both for multiplica- 
rion and for addition. 

A third effect of finite word length is inaccuracies in pa- 
rameter values. While generally signal processing parameters 
are initially specified with unlimited accuracy, they can only 
be utilized with finite word length. Thi.-, eflect is similar la the 
effect which arises in implementing analog processing using 
inaccurate circuit elements. There are two possible approaches 
to handling the inaccuracies in parameter values. One possi- 
bilitv is to develop design procedures which inherently are 
insensitive to parameter inaccuracies. An alternate is to choose 
specifications which are consistent with the limited register 
length. There is a certain amount that is understood about 
the effect of inaccuracies in parameter values, but for the 
most part present results lead to guidelinet- rather than hard 
design or analytical strategi-s. 

In the following discuss,on the relationship between the 
Unary representation of ..„.nbers and truncation or rounding 
is discussed and a statistical model for arithmetic roundoff is 

presented. This statistical model is then applied to the anal- 
ysis of fixed-point and tloating-point rounding errors in 
digital filters. The analysis includes a consideration of the 
effect of dynamic range in developing and comparing signal- 
to-noise ratios for fixed-point and tloating-point filters. It 
is not always possible to treat the effects of arithmetic round- 
off in terms of a s-'mple statistical model. Some approaches 
and results are available in the literature on the limit cycle 
behavior of digital filters due to arithmetic roundoff, and a 
discussion of sonv of these results is included. 

For the analysis of arithmetic roundoff in computation of 
the discrete Fourier transform using the fast Fourier trans- 
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form (RFT) aluorillun a Malistical model is mad, With this 
inodfl  thf siniial-t..-n11isf  ralin is developed  ami  COmfMnd 
lur hxf(i-|)(iint atxl linatinn-ixiiiit arithniftic. 

Wllik-for any |iven tiller »dtitimiratioii or spectral anal 
ysis praUen it CM be (Hftcidl to carry out a ilctailcd anal- 
ysis of the elfects of Imile re^isur leiiKth there are a nmnher 
ol neneral guidelines that can l.e distilled from the results pre 

sented here. In Section IV some examples and unidelines are 
presented for filters implemented with fixed point arithmetic 
and with HoatiiiH-point arithmetic as well as for filters im- 
plemented with the I'l'j". 

This paper is intended primarily as a tutorial review of a 
sul.ject which has received consideral.le attention over the 
past few years. The analyses which are presented here are 
selected to illustrate techniques of workin« with particular 
models. I'revious work is freely referenced, discussed, and 
liorrowed from. 

II.   Nl MHKK   KKI'KKSKM.VIION AM) Its 
tfWWCt ON Ql'AVnZATION 

.1.   Fixed-Point and Floating-Point Sumbers 

The manner in which finite word lenutli effects are mani- 
fested is closely tied to the way in which numhers art repre- 
sented. 

Digital computers ami special purpose digital h-rdware 
for the most pari use a imml.er representation with a radix of 
2. i.e., a hinary representation. Therefore, a number is repre- 
sented by a scMueme of l.imiry d'^its which are either ze-. 
or unity. Just as a decimal number is represented as a string 

of decimal di^ls with a decimal point dividing the integer 
part from the fractional  part,  the sequence of Imuiry dibits 

is divided by a Unary pdnl Into those repraeenting the In- 
teger part of the number and those repreaentini the frac- 
tional part. Thus if A den,, s the location ,,f the l.inarv point, 

the Unary numbor lOOUOl 10 has the rledmal value of (1 X2a 

+ 0X22 + ()X2' + 1X2")-H0X2 I + 1X2-
2
+1X2 ,+0x2 ,, 

This representation always corresponds ton positive number. 
The in,inner in which arithmetic is Implemented in a 

digital computer or In a special purpose hardware depnuls on 
where in  the register the  binary  point  is located.   V„r fixed- 

point arithmetic the implementation is based on the assump- 
tion that the localion of the binary point is fixed. The manner 

in which addition is carried out will not depend on the location 
of the l.inarv point for fixed-point arithmetic as long as it is 

the same for every register. Par multiplicaiion. however, the 
location (A the binary point must be known. Tor example, 
consider the product of the two 4-bit numbers 1001^ and 

(»OIU. In general, of course, the product of two-bit numbers 
will be Ih bits long. The «-bit product of the above number is 
0001101 lj. If, ,,„ the other hand, we consider the 4-bit frac- 

tions ^1001 and »001!, then the X-bit product is «00011011. 

In digital filtering applications, it is usually necessarv to ap- 
proximate the 2/.-bit product of two h-\,\\ •lumbers b\ a h- 

bit result. In Integer arithmetic this is difficult. With frac- 
tional arithmetic, on the other hand, this can be accomplished 

by truncating or rounding to the most significant h bits. For 
mtlltiplicatior with fractions, overflow can never occur since 
•he product of two fractions is a fraction. Thus for the 4-bit 
example previously mentioned, the product «00011011 can be 
approximated by «0001 (truncation) or «0010 (rounding). 

An alternative to fixed-point arithmetic is a HoatitiK-point 
representation. In this case, a positive number /• is represented 
as F=2M/. where .1/, the mantissa, is a fraction between 1 2 
and   1, and r,  the chardcteristic,  can  be either  positive or 

I'KMl IDIM.s Oh   Mil-   I Ml-., Al i.l SI   IW 

nenative. The product of two lloalinnpoint numbers is 

carried out by multiplying the mantissa as fixed-point frac- 
tions and adding the characteristics. Since the product of the 
mantissas will be between 1 4 ami 1. a normalization of the 

mantissa and corresponding adjustment of the characteristic 
mav be necessary. The sum of tw,. loMfng-poinl numbers is 
carried out by acaUag the mantissas of the smaller number to 
the right until the characteristics of the tw,, numbers are 

e.pial ami then adding the mantissas. For example, consider 
the sum of /••, and F\ with F, = 4 and /•,= 5 4. Then in Boating- 
point notation. /■', = 2r| .1/,. and /•, = 2,M/, with 

'i ■ lla (-J (ieciti alj 

,1/, = alQQO (=0.5 decimal) 

ft* U ( = 1 'ledmal) 

M, = J010 ( = 5 8 decimal). 

In order to carry out the addition, r, must be changed to equal 
C| and .1/-. must be adjusted accordingly. Thus first the repre- 
sentation of Fi is changed to F. = 2r2.1/,. with 

«»-  It« 

Ü. = «0M01 

in which case the mantissas can now be added. The resultiiiK 
sum is F=2'M with e-H« and .1/= JOIOI. In this case the 

sum of .1/, and M. is a fraction between 1,2 and 1 and therefore 
no further adjustment of r has to be carried out. In a more 
Heneral case, the sum may not be in that rftttge, and conse- 
quently, t would be adjusted to brim; the mantissa into the 
proper range, '"rom this example it should be clear that in 

general with loating'painl arithmetic, the mantissa can ex- 
ceed the register lenuth and nuisi therefore be truncated or 
rounded for both addition and multiplication whereas this is 

only neceaaary for multiplication in the fised-potat case. On 
the  other   hand,   if  the  result   of addition   in   the  ti.xed-point 

caaa exceed«  the regiater  length,  truncation  or rounding 
Will not help, i.e.. the dynamic range has been exceeded. Thus 

while fioating point introduces error due to arithmetic round- 
off, it provides much greater dynamic ranne than fixed point. 
As we will see later, both of theae elfecis must be considered 

«hen comparing fixed-point and ftoaring-poiat realizations 
ol digital filters. 

H.  Representation oj Ntgatfot Xnmhers 

I here   are   three  common   means   used   for   representint; 
fixed-point negative numbers.   The first, and most familiar, is 
rign and magnitude, i.e., the magnitude «which is of course 
positive) is represented as a binarv nuaiber and the sii;ii is 
represented by the leading binary (Hgil which, if 0 corresponds 
to a + and if 1 corresponds to a - lor vice versa). Thus for 
example, in dgfl and magnitude 0«001l represents 3 Id and 
l«001l represents -3 16. Two other related representations 
of negative numbers are often referred to as one's-comple- 
meiil and two's-complement representations. Considering all 
numbers to be fractions, a positive number is represented as 
before. For two's complement representation a negative num- 
ber is represented by 2.0 minus its magnitude. For example 

— (0«0110) in sinn and magnitude is represented as I«I010 

in two's-complement since lOftOOO—0«0100> 1«1010. For 
one's-complement, the negative number is represented by 
subtracting the magnitude from the largest number repre- 
sentable in the renister. Thus -<0«0110) is represented bv 

tt     3 . .' 
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(Ulltl)-(0«OI10)-U100l. on.'s rnM|i| | nprwu 
don is .■.|ui\.tlrMt  to wpmratiag | Mgfttivc miinlx-r by the 
liit-l)y-l.it .uniplfnifnt of its nufaitttife. The cli'Mit' ol nprt- 
sfiitalion   fof   Mfltlvi   miiul.crs  in   a   parlitular   sysU-tn   is 

usually l.ascd alm.isl rnliri'ly on liardwarr cousidfrations. 

h.r the r.'iirfsfnlatidii ..f Mgttfa liwtillg-paial nuiiili.Ts 

lluTf arv a variety of tcmvfiili.Mis thai have beta used. In 

this paiHT w* will consider the si^n of the mmdKr to l>f asso- 

iialfd with the mantissa so that the mantissa is a signed 

fraetion. The representation ol this signed fraction can of 

••ourse l,e in si«n and magnitude, one's-coniplement of two's- 
complement notation. 

('. .! Model for Arithmelic Roundotf 

In formulatintj ■ model for arithmetic romulotT, we shall 

consider both fixed-point lumilters and mantissas of lloatinn- 

point numbers to be represented as 6+1-bit binary fractions, 

with the binary point just to the right of the hiKhest order bit 

(or sign bit). This convention represents no loss of generality, 

and its convenience has been alluded to above. The numerical 

value (for positive numbers) of a one in the least significant 

bit is 2-». and this quantity can be referred to as the width of 
i|uantuation. 

As indicated previously, the elTect of finite register length 

on the result of arithmetic operations depends on whether 

fixed-point or floating-point arithmetic is used, and hov nega- 

tive numbers are represented. Let us consider first the .-fTect 

ot truncation and rounding in the fix<>d-poi,it case. For sign 

and magnitude, oiic's-complement and two's-compleinent. 

the representation of positive numbers is identical and, cor 

se(|uen-|y. so is the el'lect of truncation and roiiiidiiig. If I:T 

denote; tie error dw to truncation, i.e.. the value after trnr,- 

catlon iiiMuis the value before truncalion. this error will al- 

ways be negative for positive iinnibeis. That is, the effect of 

Inincation is to reduce the value of the numbers. More 

specifically, if/), denotes the mimber of bits lexclusive of sign) 

after truncation, and 6, denotes the number ol bits before 

truncation, then the result satisfies 0 >/ir > — (2 ''■ —2"'"). 

With sign and magnitude representation of negative num- 

bers. Inincation reduces the maj;ninide of the number and the 

error Er satisfies ()</-T<I2^-2 S For a two's-comple- 

ment negative luimber represenled bv llu bit string l4, ,/,, 
«■.•, • • • , iii,t. the magnitude is given liv 

<«y 

SU = 2.0 - . Vl 

whi 

«« = ' + E "./2-'. 
1 

Truncation to h bits (*t<*|)  produces the bit  siring  l4, ,/, 

"v, ' • • , </(,,„ where now the magnitude is 

0(.l 

with 

if. = 2.0 - 

- t + £ (;,2- 

Q(<l 

The change in magnitude is 

±M = M, - A/, =    ^   aß-' 

^ Ttuncolion Truncalion 

,•2     <Q(l)-i (£'• compl«m«nl) (l'f compltrrnnl ono „,n 

0c0(i)-i  >2'6 ond mognitudf 

0«0(i)-« >2_b ; i>0 

OS 0|i)-i< f* , i<o 

I'll!. 1.    Tnmsfcr cliaracleristics for rciundiii). and truncation. 

and it is easily seen that 

0 < \M < 2~b' - 2"'. 

Hence the elTect of truncation for two's-complement negative 

numbers is to iturease the magnitude of the negative number; 

the truncation error is negative, and satisfies ()>£,.>- (2"^ 
-2 "). _ 

For a one's-complement negative number represented by 

the bit string 1^. au ,/,, • • • , „hit the magnitude is gi\en bv 

If, = 2.0 - 2 •Vl 

and truncation to ft... bits yields a magnitude 

If I = 2.0 - 2^ - x-, 

when  v, and .v.. are as defined above. The change in magnitude 
is 

'., 
±M m Mt - .»/i =    £   <;,2 '- (2-H- 2'") 

, /,,, . i 

and now 

0 > AM > (2 '■■■ 7  hi 

Hence the elTect of triincatioa for one's complement negative 

numbers is to drcrrnse the magnitude of the negative  mini 

ber; the truncation erroi is positive, and satisfies {)</■'T<2~-2 

-2 »>. ~ 

The effect of rounding, of course, will be the same inde- 

pendent of how negative numbers are represented and the 

rounding error will always be greater than or equal to 

(-1 2)2 ''and less than or equal to ( + 1 2)2*. The effect of 

truncation and rounding for the fixed-point case is summarized 

ID I-ig. : where v represents the value before truncation or 

rounding and Ow) represents the value after. In the figure it 

is assumed that v can take on a conlinuous range of values, 

correspon.'ir, t,, /,, = x in the discussion above, and that the 

quantized word length is ft bits plus sign. 

For the case of floating-point arithmetic, the effect of 

truncalion or rounding is reflected only in the mantissa. It is 

convenient in the (loating-point case to describe the error in a 

mulliplicalive sense rather than in an additive sense as is 

done in fixed-point arithmetic. In other words, for a Hoating- 

point word, if .v represents the value before truncation or 

rounding and ()(.v) represents the value after, then we express 

Q(x) as equ d to .v( 1 +e). For the case of rounding, for example, 

the error in »he mantissa is between +2-' 2, and conse- 

quently the erroi in the value of the floating-point word is 

2-» 2" 
-2----<()(.v)-:V< 2'- — 

2 2 

- -^- ■ 
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()()(l 

p(ET) 

Rounding 

I 

-2-Vz -2% 
(a) 

P(ET) 

2'l compltm«n» Truncation 

(b) 

Ki«   2.    (.,i ProkiLiliiy di'iisiiv tmuiioii I,,! loumlinK BO M   (h) Plate- 
hility dMrity tuiution l„r Mtac .Im- to IWOa»«oa „i.ni .rum-.mon. 

nr. shn-v {){x) — x = tx 

2 >> i I 
-2-        <,.,<>. 

2   "      _        I 

udriMer ii»<2»l men nrrittdwl forthB aseof-,„m.l 
mi; -2 ^t <2 fc. In .i similar IIKIHIUT WC CM rilO« lliat for 

(me^Mompiencnl •oH tor rigg an.l  magnitiHk trvacation 
()>t>_2.2 h. Fortwo'i-coBtphawi mmcatioa 

(i > f > -j.!-*,       ,•> (i 

(l<e < 2-2 ", ,< (I. 

/'.  SMitNnl Model of Arithmelic KoiimlolJ 

Acoaveaieal HMUU for analv/ini; tkc effect of qiuintiM- 
lion ia to repraeal tiw MTOT tutiedodiy |l|. |2|. in ,,ar- 
lnular, (or the CSieof llx.'d-iM.int arillinvli.- and roufMÜng I:T 

is rcpreeented na madoai rarikUe with ■ probebitity ifendty 
shewn in Rg. 2(a). For the caae ol two'e^mptemeiil tram»- 
iii)n. tin- nrohaliility denaity is ibown in \"\^. 1(b). 

In fach ,.i theae caaea, the aaaumption is that the r»ndoin 
variaUe ET is independeal oi .v. For one'a .■.nnpl.-m.-ni and 
rign magnitude tnincation, thia aaauinption cannot be made 
simv the mean value ol the error is directly conelated with 
thedgn of», In theanaiyaiathat foiiowafor fixed-point arith- 
nu-tic, the discussion is piirascd in u-nns of rottluUng. The r.-- 
sultsarc easily nodifwd for two'a-oompteraent truncation. In 
particular the variance of the noise is identical for both cases. 
However, for rounding the noise is zero mean and for I wo's- 
coinplemenl truncation it is not zero mean. 

For the floatinR-point case, the parameter t is considered 
to ha a random variable which is independent of .v. In that 
case the assumption of independence is re isonaMe for round- 

ing, sign and magnitude tn-ncation, and one's-complemeni 
truncation, Imt not for two's-complement truncation. The 
random variable t is hounded by -2-h<t<2 \ We will gen- 
erally assume t to be uniformly distributed in this range with a 
variance a.2 = ( I 3)2 • Empirical work has shown that the 
distribution is not quite uniform so that while a.2 is propor- 
tional to 2 26, the constant uf proportionality is slightlv less 
than 1/3. However, the interpretation of the results depends 
primarily  m the proportionality to 2  ■''. 

III.  FINITE ÜBcnma I.KMWH IJ-IKCIS 
I OR DIGITAL FILTERS [j] 

A.  InlroductioH 

The basic arithmetic operations involved in implemenla- 
tinn of a digital filter are multiplication by a constant and 

rkocT.U)i.Ni,s OK iHh n-ii, At .,i si iy72 

addition. For lix.d point arilhnietic. roundotT is introduced 
"iilv after the mnllipli.aUon. Uecause of the possibility of 

o\erllow due to addition, there is a dynamic range limitation 
in lixed-point liltcrs. In contrast, lioating-point filter imple- 
menlation has a much less severe dynamic range constraint, 
although arithmetic mundotl is introduced due to both „lulti 
I'licalion and ad.lition. In the next sections we «iil first de- 

velop the statistical analysis of aiithmetic roundoff for hxed- 
p. int lilt, is including dMiaini. ran , onsideralions This is 
f. ilowcd by a statistical analysis for lioating-point arithm, tic 
and a discussion of zero input limit cycle behavior for lixed- 
poinl arithmetic. 

H. Slalisliuil Analysis of hix,;l-l>oi„l l-.rrors in „ />/»,/„/ 
Fillrr |./|,  |5j 

III many situations it is reasonable to model the effect of 
rounding in a digital filter bv a simple statistical „„„1,1. The 

approach is to model the effect of the rounding at each multi- 
plier by a while-noise source iiniformly distributed in ampli 
Hide between pi,,* and minus (1 2)2 ''. Fach of the noise 
sources is assumed  to be linearlv independenl  of each other 

and ..I the inptii. Experimentally theae assumptions have 
been justilied for a broad class of inpnt- including random 
signals, speech, etc. The model is clearly not valid for certain 
inputs, such as coiislanl inputs If the impulse ICepoMC fi nn 
the Hh noise source to the output is /;,,(;;) then the steady- 

state out put noise Variance dttC to the *th noise source is 

°"k' = a,'1 2*t*(*) (1) 

«here   ar-A   12l2   •,   Since   all   the   noise   sources  are  as- 
sinued to be uncorrdatcd, the total output noise is 

■"- = Z!ff"*J- (2) 

For example, if «e consider the liist-order niter in Fig. 3 one 

noise source is inlrodu.- ,1,  In this caae, the impulse resi.:.iise 

from the noise aouroe input to the output is //i(n = .;";, ,(») 
«lure n   , denotes a unil step se.pience. so that 

12 

;i second-order filter with 

1 - ,1 
(^) 

For .. s,,o,,,i-oriier mier Wim o ie complex pole pair ther ■ are 
tWO noise sources as indicted ii Fig, 4. The resulting output 
noise is 

" 12 2     Vl - r2  r«+l-2r»c^2ej- (4) 

('. Dymmk Rs«fa fytuidtrmthmftr Fixed-Poim Filters 

As indicated previously, the possibility of overllow must 
be considered in the implementation of digital filters with 
lixed-point arithmetic. With the convention that each fixed- 
point register represents a signed fraction, each node in the 

filter must be constrained to maintain a magnitude less than 
unity in order to avoid overllow. Letting .v(«) denote the filter 
input and yk(„) and /;,(«) denote the output and unit sample 
response for the *th node in the filter, then 

X 

v*(") = 5>*W.v("-r). (5) 
r    II 

If Vmax denotes the maximum of the absolute value of the in- 

*■»..     ' 
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>(n)< 

€(n)C 

| »ym 

Ki«.  i     \i>isy first-mdrr filler (tixiMl potat). 

«(") 

(,{n) 

ftg. 4.     Noisy sivimdiiKJiT tiltci (tixcil pnim). 

put then 

! >-*(") I < x , £ | »»(r) i. (6) 
r    II 

Tims, since m require that | yt{n)\ <1 (6) requirei that 

»•„„i: < I / Z I **{r) for all k. (') 

E(|iiatiiin (7) thus provide! an upper bound on the maximuin 
value of the input to insun that no overflow oceurs in the k\h 

node. For a general input (7) in fact provides a least upper 
hound, i.e., il the maximum value of the input exceeds the 

hound, overflow can occur. This is a consequence of the fact 
that equality can be achieved in (6) with a sequence xln) for 

which at n ^ n„. x(ii0 — r) = |s^n fc»(f)] for r = 0 to ». (Where 
sun (.v) = 1 for .v >0 and sgn (.v) = - 1 for .v<0.) Thus in the 

most general case, (7) is required to iMrtntee thai no over- 
flow occurs. The condition in (7) would generally be satisfied 
by applying attenuation to the signal at the tilter input. 

If we assume, for example, that the input xiu) is a white- 
noise sequence with a uniform amplitude distriliution, we 
would choose for the case of the first-order filter a maximal 
input ampiitude of (\—ii). For this case, if a/ denotes the 
variance of the input signal, and CT,,

2
 denotes the variance of 

the output signal, then 

-G)(,;::r) 
(8a) 

(8b) 

For this example, we can then compute a noiit'-lo-signal ratio 
as the ratio(T0

2 cr^ with the result 

1 
= -2- 

4 

1 

(I - •)» 
(9) 

In a similar manner we can derive a nnise-to-signal rati ) for 
the second-order filter shown in Fig. 4. As in the first-order 
case, we restrict the maximum input in order to guarantee 

that the dynamic range of the registers is not exceeded. If we 
consider the input sequence to he uniformly distrilmted white 
noise, the resulting output noise-to-signal ratio will be 

=     2 -"(    '     X>lsin|(»;+ l)ejl  ) .        (10) 
2        Vsin 6 „ „ / 

While il is difficult to evaluate this expression exactly, it is 

possible to obtain an u| »per and lower houud. Siliee£aL«| h%\ is 
the largest possible output obtainable with an input that 
ne' er exceeds unity, it must be larger than the response of 
the second-order filler to a sinusoid of unity amplitude at the 
resonant frequency. With this consideration, we can write that 

\ „   n / 
1.(1 - ^-'(1 +r2- 2rcos2e)    (11) 

since the li^ht-har.d side of this inequality is the gain at reso- 
nance. Furthermore, 

(    ib-"'sini(» + i)erY <f - - i>y. (i2) 
Vsin 0 „ „ /        Vsin ö „  „    / 

Theiefore, for the second-order case 

1 1 

(1 - ry\\ + ri - 2rc()s20) 

»,«       1       ^ 1 

c,,-      2        sin-0(1 ry 
(13) 

For both the first- and second-order filter an expression for 

the noise-to-signal ratio can be obtained which provides some 
insight into the behavior of the noise-to-signal ratio as the 
poll's approach the unit circle. For the first-order filter let 
6=1 —(i so that as S—»0, the pole approaches the unit circle. 
Then in terms of 6. the noise-to-signal ratio lor the first-order 

filter is 

(14) 

For the second-order filter, let 6= 1 —r so that, again, as 6—>0 
the poles approach the unit circle. Then if we assume that 

5«1, we can approximate (1+r2—2r cos 26) as 

r.«      1 1 
=     2 2k _ 

<T,,-'      4 5- 

(1 + r- - 2r cos 26) 3 4 sin- 6 + S" (15) 

which for 4 siii20 large compared with 52 we will approximate 
as 4 sin2 6. Consequently, incorporating this approximation, 

{> 1 (7,r       1 1 
<     - < - 2   ''• 

46'2sin2Ö      a,,2      2 ö^sh^ö 
(16) 

Thus we observe thai the noise-to-signal ratio as considered 
thus far can be considered to be proportional to 2_2'' 62. We 

note from this dependence that if 5 is halved, then to maintain 
tin same noise-to-signal ratio ft must be increased by 1, i.e., 
one bit must be added to the register length. This dependence 
provides a convenient basis for comparison of different over- 
How strategies anil different kinds of arithmetic. 

In the above analysis, the filter input was assumed to be 
uniformly distributed white noise. As 8 approaches zero the 
frequency response of both the first- and second-order filter 

■tea ^^ .      ...■■.,....J- 
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ln'comcs nu)tf si'U-itive n that man and mm ol the input 

em-rgy is out of hand. An altornativc ha'is for diMennininn 
the noist- to-signal ratio is for an input whicii is sinusoidal. 
For this choici' of inputs, of fourse, we would not use ihr 
■•Mral rondition of (7) to avoid overHow siniv M CM dttcr- 
initif exactly the inaxiniuni allowahie input ampiitude as a 
fuiution of the (ilter parameters. 

In particular, if the input is of the form V(H) ^.v,,,., cos w^ 
then the steady-state output is of the form v(«)=y„„x cos 
(#+#). To prevent overflow, y,,,., nuist he less than unity 
and to maximize the output signal energy, ymm is chosen to iw 
as large as possihle. Thus the maximum noise-to-signal ratio 
is obtained when *„,„ is chosen so that y(«)=cos (H^+^). 

Note that in order to choose xlmx in this way, the frequency of 
the input signal must he known. For an input sinusoid of ur.- 
known frecpicncy .v„iax must he attenuated so that overflow 
will not occur even in the worst case, where the frequency of 
the input coincides with the peak gain in the filter's transfer 
function. 

For fixed-point Liters, within the validity of the statistical 
model for roundotl error, the output noise is independent of 
the form and amplitude of the input signal. Thus for this 
choice of inputs, the noise-to-signal ratio ohtained for the 
first-order filter is 

a,,2 1 1 
 =  2-20  
»,«       24 1 - a' 

If, as hefore, we let a = 1 -5, then for 5«! 

Co' 1    2-" 

48     5 

(17) 

(18) 

Thus in this case, the noise-to-signal ratio is proportional to 
1 b rather than 1 5- so that if h is multiplied by 1 4 and the 
register length is increased by one hit, the noise-to signal 
ratio will remain constant. We can consider the second- 
order case in a similar manner. Again for a sinusoidal input, 
the output with maximum amplitude has the form y(?() = 
cos [nt+i) so that the noise-to-signal ratio in this case is 

<r„2 _   1 

a„2 " 12 

/I + r2 

V 1 - r2   1 

1 

+ r4 - 2r2 cos 26 )■ 

Again, choosing r= 1 -5 with 5«! 

o-„- 

45 sin2 0 

(19) 

(20) 

so that, as with the first-order filter, the noise-to-signal ratio 
is proportional to IS rather than 1 61. The comparison in the 
noise-to-signal ratio for a white-noise input and a sinusoidal 
input serves to illustrate the dependence of the efTect of dy- 

namic range considerations on the particular form of the in- 
put. In some sense, the two cases considered represent ex- 
tremes. As the input become» more confined to a known nar- 
row hand of frequencies the above analysis with a sinusoidal 
input would be more representative, and as the input becomes 
more wideband the above analysis with a white-noise input 
is more representative. 

In the above discussion, the noise-to-signal ratio for the 
cas.' of white-noise input was derived on the basis that over- 
flow must he avoided. In a practical case, a scaling of the in- 
put on the basis of (7) can he considered to he somewhat pessi- 
mistic since the probability of equality being attained in (7) 
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is extremely small. Furthermore, for many filters it is difficult 
to compute the sum in (7). Jackson |7) has formulated the 

dynamic range constraints on fixed-point digital filters in 
terms of /,,, norms. In particular, let K(l»), -V.w), and //(ui) 

denote the Fourier transforms of the filter output, input, and 
system impulse response, respectively. Then it can be shown 
in general that 

I v{«)i  <i|W||p||-V||,l,/>+ l/f .1 (21) 

where //: ;, and '■ X „ are the /,,, norm and /.,, noini of I/tw) 

and .Y(w), respectively, where these norms are defined as 

in [s/j ■<•""•] 
l/;- 

and 

For example, with //(w) chosen as unitv, a consequence of 
(21) isthat 

i-f(")|  < !|.V|!„        all(/> 1. 

As another consequence, if we choose /)=!, </= », and use 

the fact that the /,„ norm of \X(m)\ is the maximum value 
of I A'(w) | then we obtain the statement that 

1   C 
j v(«) 1  < max 11 \{w) ill     j B(m) j du. 

As an alternative, with p = 2, (/ = 2, 

i v(«)j   < r   J   l//^)!2,/«!' 
(- 1       /•' -11,2 

•[-J jA»i2,/wJ    . 
To prevent overflow in the output we require that 

|y(«)| <1 and to insure this from (21) we will require that 

IWUWIt<l< Consequently, the input must be scaled in 
such a way that 

-V,<l/||//|i (22) 

This condition is somewhat less general than (7) but in many 
cases is easier to apply. According to (22) with p = 2, q = 2, 

the condition is in terms of the energy hi the input signal and 
the energy in the system impulse response. F'or q=l, p= x, 
(22) provides a bound in terms of the peak value of the mag- 
nitude of the transfer fuiution. which is perhaps most ap- 
propriate for a sinusoidal input. 

For the case of a random input (21) cannot be applied 
since the input and output do not have Fourier transforms. 
In this case the corresponding condition is phrased in terms of 

^Hr(w) the autocorrelation function of the output, 4wM ,'11, 

power density spectrum of the input, and //(to) the magnitude 
of the system function. In particular, the inequality corre- 
sponding to (21) is 

<M") < ff,y#. (2^a) 

or equiv alently 

fc»(») < NUIIMr (23b) 
Since, if the input is -ero mean, ^„(O) =(r1/

! it follows that 

         -     - 
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au   < I//IILII*. 
I Wd purticular casfs of intert-st m />= 1, 

</= t so that 

- ^ |//||I|*J: 
"li. 

and 

"y'^WflLU, 

(24) 

'/= « ami !>=<*>, 

(25) 

(26) 

•,(n) 

■ (n) 

As Jarkson pomts .uit. (25) implivs tlH most slrin^m romli- 
tion on tlu- mput spectrum «UM) whereas (26) implies the 
■m.st strmnent (-.„ulition „„ UM transfer fmution. Kr.,,,, (2S) 

>f the input spectrum is while so that*^) -,,l for all a,, then 

»(r.) 

< ff/l//   ". (27) 

with the input se.|uence Caussian, then, the output will over- 
How no more often than the Input overflows if 

I r/\ //I - < 1. (28) 

Matt Renerally. (27) provides a l.asis for choosiim the input 
variance to control the maximum percentaHe of time that the 
output can overflow. 

P. .Slulislicul AualysLs of Romuloß Errors vill, Floatinv-Point 
A nih met ic 

For thecaseof floatiMK-poiut arithmetic, noise is introduce.l 
due Loth to the adds and the multiplies. In analv/inK the 
effect of lloatmu-point roundoff the effect of rounding „ill be 

represented multiplicatively so that if |.v| denotes roundinK of 
the mantissa in a tloatmK-pomt nuinher, then 

W - .v(l + e). (,(,) 

To illustrate the analysis of roundoff errors with tloalinK-point 
arithmetic let us consider a first-order filter. Let Win} denote 
the ideal response of the filter, that is, the response with no 
roundoff noise and let y(H) denote the response of the filter in 
the presence of roundoff noise. Then f.llowin, Liu and Kaneko 
|»J we can write that 

»(«) - awin - 1) + .,•(«) (M)) 

v(») - |,(y0/ -!)(!+ („'■ + ,•(„)](! + ^      juj 

Ue assume that fc and '„ are uniformly distril.ute.l between 

8 and 2 , are uncorrelated from iteration to iteration are 
nulependent of each other, and also are independent of'the 
.stKiial. Lettin« Ein) represent the error in the output, so that /,(,,)_,,(„, _Il.(„)i we (..lI] wrjl(, fnm i|u ;i|((iv( ^ (,(|lI,ltions 

Bin) - ,;/•.(;/ - 1) 

= aw(n ~ !)(,,, + i,) + xill)li = ,/(/;)   (32j 

where we ha c neKlected sec.Mul-,,rder terms in t, { and /• 
Since t and { are statistically independent of v, and of»(„ - 1) 
the term „i,,) is easily shown to be a white-noise sequence IN 

variance, of course, dtpendl on the excitation v(») The 

derivation of (12) with the second-order terms neglected cor- 
responds to representing the roundoff noise as an additive 
noise source that is statistically independent of the signal but 
whose variance depends on the signal variance. Speciticallv 
consider the first-order network drawn in Fig. 5 with the two 
noise sources ft(«) and e-An). From the model for multiplier 

1% 5.     Noisy lirsl-.,nl.r fill.-r (Hoatins Iiointi. 

roundoff noise, the noise source f,(«) is gi^.,, by 

eM = ay{„ - !)(,. (jj) 

and the noise source e2(«) is given by 

(•■An) = «(«)?„. (14) 

The analysis above in which we neglected second-order terms 
corresponds in this case to evaluating the v iriance of e,(n) and 
e-'in) by using the mean-s.piare values f., ■ v(;/-l) and ((s) 
llial would result if no roundoff noise were present. Therefore, 

if we assume that .v(«) is a zero-mean white-noise input, with 
variance »,•, then the variances of *(«) and •.(«) are. respec- 
tively. ' 

a.r = «WyHii - 1) = g%,v,i—L-        ^j 
1 — a- 

1   —   (T 

where the bar denotes expected value. Then, since *(«) and 
hin) are independent, because t,. and fc, are independent, the 
output noise variance is 

.,   ,    ! + ""'                   1 + a" 
arax   —-    = a,-av-  

(1 - sy        " i - „= (37») 

where we ha v.  assumed again that a* and (7£
2 are equal. The 

output noise-to-signal ratio is 

a.r 1 + <r 
= ».' 

1 - a- 
(^7b) 

We can anahze the effect of roundoff noise in the second-order 
filter in a similar manner. In Fig. 6 is shown the network for a 

second-order filter «ith roundoff noise sources included. Note 
that since noise sources must be included due to addition, two 
summers are included to add the three variables in the feed- 
back loop. The noise sources <■:,(») and *«(«] represent the noise 
due to the multiplies and the noise sources f,(/,) and e-An) rep- 
resent the noise due to the additions. With assumptions simi- 

lar to those above in which we neglected second-order terms 
we write that 

ti{n) = jf<N}ci(«) 

•tin) = |v(;() - .v0/)](;,(„) 
(•.•i(") = 2rc()sÖv(/; - l)e:l(«) 

«<(») = - r^y{„ _ 2)t,(«) (M) 
* 
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•iim 

-y(>i) 

»(n-l) 

y(n-2l 

•«(n) 

•"'•(a- ().     \c.isy ülMii Ullfcl tilt.r (llDatiiiK l"iiiiii. 

whm-1,, t„ ej, and t, are iafcfwadMt ra.ul,,,,, varial.les with 
equal VMiMea ».t If as before. x(«) is assun.e.l to l,e a white 
random process with variance ».•. ,1,.,, the outpnt „oise-to- 
MUnal ratio for the second-order ease is 

?="'[,+'<■"•-'■'—-"•';:";;)] 
whi 

(39) 

(40) 

for the h.Kh gam ease, it is possible to compare lixed-point 
ami t.oat.n.-po.nt arithmetic by approxi„.atinK the expres- 
stons for the notse-to-signal ratio. For the Hrst-order case 

w.th „ = 15, and 5«1. the resnlt (,?7I0 for the Srrt-ordtr 
niter, can be approximated as 

—-at-^ 
(Tu2 3 (41) 

(42) 

Similarly for the second-order filter 

^ly-tt/J + Wft 
^v2      3        \   45 sin2 9   / 

where in (41) and (42) we have taken r«<»(]  ^f« 

For hxed-point arithn.etic we recall that for a white-noise 
input the mnse-to-signal ratio behaved as 1  «' and for a sinus- 

! iS "TIT ! C,,m"aris<"1 "f (*») «"<! (42) with (14) and 
(16) and (18) and (20) indicates a slightly larger noise-to-sig- 
nal ratio for floating-point arithmetic as compared with 
fixed-point arithmetic with a sinusoidal inpnt of known fre- 

quency but a significantly smaller noise-to-signal ratio for 
noat.ng-po,,,, anthmetic as compared with fixed-point arith- 

■"l' "■ ""h • «hite-noise inpnt. It is in.por.ant to keep in 
■"""I, however, that the noise-to-signal ratios for the (i'ed- 
P'-mt filters were compnted on the basis that the input signal 
WW as large as possible. If the input signal level dec««* the 
-"-s.-to-s,gnal ratio will increase since the o„tp„t noise vari- 

an« is indepeiulent of the inpnt signal level. For tloating-point 
andHne,,,., on „,.. ,„her hand,  the output  noise varianc. 

pnM...rtiomd to tlu. ..utpn. signal variance and as the input 
level U scaled up or down so is the roundoff noise. It is also 

'"M-tant ,o note that the comparison just discussed assumes 
'fiat the Hoatmg-poMit mantissa is e.p.al in length to the 
entire fixed po.nt word, and does „o. account for the extra 
I'.ts needed f„r the characteristic. The authors |6] have prex i 

MaaaNRMn m mt HHB, *oaon i<J7.> 

-usly con.pare.l fixed- an.l lloating-point filters on the basis of 
equal total won! length. However, in completing such a 
'■"mpanson one must take account of the large difference in 

fianiware complexity between implementing (loating-poim 
anthmet.c, and adding a few bits to a fixed-point arithmetic 
element. 

Ol'Penheim   (f)   has  proposed  a  realisation  of recursive 
jl'K.tal hlters using block floating-point arithmetic. Mere the 

«•P* and filter states (i.e., the inputs to the delav registers) 

are jotntlv normalized before the multiplications and addi 
ions are performed in fixed-point arithmetic. The scale factor 

(or exponent) obtained during the normalization is then ap- 

Pl.ed to the final output to obtain a fixed-point output. The 
roundoff notse properties of such a realization were studied 

and the no.se-.o-signal ratio was found to lie between that 
lor fixed and floating point. 

J. tero-lHp,,,   /,„„>   cyrk   Behavior  of  IH^ital   FtUers Jar 
htxed-Potnt Arithmetic 

In the preceding discussion the effect of arithmetic round- 

..f was .„odelled as an additive white-noise source, uncorre- 
ated with the data. Justification of this model assumes that 

from iteration to iteration, the input can be expected to pass 
tfirough several quantization levels. Consequently, this model 
-s applied primarily when the input signal has a complicated 
I'ehavior and cannot be expected to be valid in general For 

example, consider a first-order filter for which the difference 
equation is 

v» «3'"-i + *■ (43) 

and for which the register length for the data is 4 bits and the 

eoeffinent a is 0.5. If the input .v„ is 7 8 and if rounding is 
applied after the arithmetic then on successive iterations of 
the filter, the output will be: 

v„ - f/| 

vi - 1 2 

ft = 1/4 

ft = 1 8 

ft = 1 '8,        for u > 4. 

Thus due to rounding, the output reaches a steadv-state non- 
zero value and since the ideal steady-state output'is zero, this 
nonzero value represents roundoff error. Clearlv this kind of 
roundoff error cannot be modelled as white noise, but in fact 
represents a limit cycle due to the nonlinearitv corresponding 
to the quantizer which implements the rounding. Limit evele 
Lehavmr of this type was first noted l.v Blackman [l0] who 
referred to the amplitude intervals within which these limit 

eydes are  confined  as  "deadbands."   Blackmail   considered 
only hrst-order limit cycles corresponding to a dc behavior in 

tfie .leadband.  More generally, Jackson  |ll] has considered 
limit cycle behavior in first- and second-order filter sections 
with an analysis based on the location of the "effective" poles 
i"  the  filter  due  to roundoff.   Following  the approach  pre- 
sented by Jackson, consider a first-order filter with a differ- 
ence equatmn of the lorm of (4.0. Due to the register length 
eonstraim,   the   product  «ft-l   must   be  rounded    let   (•)' 
'enote  the operation  of rounding.   If  the register length  is 
'/'+!) hits and if data are represented as fractions then 

| («ft.|)' - av„_i [   < (§)2-6. (44) 

If v„. , is such that |(«v,.-,)'| =|v,._1|  then the magnitude of 

; ..^.,  ..... ,■.... ■ .   .,.., 
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tht tffactivfl \aliii' of t\\v i-oi'lVnii-iit is iniiiv oorreqxmdini to 
ilif pnlc ot ilic lilicr lifin^ on the unit cirilf. The range ol 
values for wliich this condition is met is 

%5 

v„ i| — I «v„-i|   < 0.)2 '' 

or 

*-l  < 
((15)2- 

1 -   \c 

(45) 

(46) 

This nwfe of values is referred to as the ileadbaiui. Due to 
rounding, of course, values within the deadkind must lie in 
steps of 2~6. For the first-order filter, when the filter state 
falls within this ranne and the input is zero, the effective pole 
is on the unit circle and the filter will support a limit cycle 
hehavior. If the coetiticient a is positive, as in the aliove ex- 
ample, the limit cycle response is dc, i.e., has constant man- 
nitude and sign. Vor a negative the limit cycle behavior has 
constant magnitude hut alternating sign. 

For a second-order filter there is a larger variety of modes 
of limit cycle behavior. In particular, consider the second- 
order difference eciuation 

= .v„ - div,, fa y«-i. (47) 

With A*<+40| the filter poles occur as a complex conjugate 
pair and with (kmi the poles occur on the unit circle. The 
approach proposed by Jackson for examining the limit cycle 
behavior of the second-order filter corresponds to consideriiv; 
the filter behav ior when the effect of rounding places the effec- 
tive poles ol the filter on the unit circle. With /ein input the 
effective poles will be on the unit circle if 

-   I (&V„- :•)      <\lh 

y»-i 
(0.5)2 ' 

1 - Id, 

(48) 

(49) 

'I hus if the output falls within this range the effective v alue of 
fit is unity so that the effective poles are on the unit circle. 
With the effective value atßf as unity, the effective value of 
di controls the oscillation frequency. 

A second mode of limit cycle behavior occurs in second- 
order filters when the effect of rounding is to place an effective 
pole at s= ±1. As shown by Jackson, the deadband corre- 
sponding to this mode is for values less than or equal to 
l/(l-|/3i| -| #.) in steps of integer multiples of 2 K 

While this approach is somewhat heuristic, Jackson has 
found that these bounds are consistent with experimental 
results and hence he has hv pothesi/ed that Iluv represent 
necessary and suffuieiil conditions. These bounds for second- 

order filters are summarized in Fig. 7, showing different dead- 
band subregions in the #,, fit plane. The number within an 
area in the fii, fit plane represents the maximum magnitude of 
the limit cycle in multiples of 2 • and the cross batched region 
represents the region for which no limit cycles can occur. 

Recently, Parker and Hess \U] have studied the limit 
cycle problem further, and found that these bounds are ap- 
proximately correct and sufficient, but not necessary. In 
other words, there exist some limit cycles outside the regions 
specified by Fig. 7. 

In addition to the above classes of limit cycles, a more 
severe type of limit cycle can occur due to overllow in filters 
implemented   using one's-complement  or  two's-complement 

Kitj. 7.     DeadbaW) subregions. 

arithmetic. These limit cycles have been referred to as over- 
flow oscillations [13] and can be avoided by using saturation 
arithmetic. 

F. Effects of Parameter Qmuitization in Digital Fillers 

In the preceding sections we focussed on the effects of 
arithmetic roundotT in digital filters. Another conse(|uence of 
the recpiirement of finite register length is that the filter coeffi- 
cients cannot be specified exactly. Classical design procedures 
generally lead to filter coeffuients with arbitrary accuracy and 
the implementation of the filter then requires that the coeffi- 
cients be modified to tit the available register length. F'or hard- 
ware realizations of digital filters it is, of cc urse, desirable to 
keep the register length as small as possible. 

One common approach to the problem of parameter quan- 
tization is the use ol filter configurations or structures which 
in some sense are least sensitive to inaccuracies in the param- 
eters. One of the difficulties in evaluating the sensitivity of 
filter structures is the choice of a meaningful measure of the 
sensitivity. Most commonly, the sensitivity of the filter is tied 
to the nioveiiuiil of the poles of the filter. For this choice 
Kaiser |14| has ehowfl thai for a filter with clustered poles a 
cascade or parallel combination of first- and second-order sec- 
tions provides more accuracy in the pole positions than a 
direct form rea/ization. This is basically a consequence of the 

fact that for a polynomial whose roots are clustered, the sensi- 
tivity ol the roots to changes in the polynomial coefficients 
increases as the order of the polynomial increases. Thus the 
roots can be more acenrat'/.y controlled if the polynomial is 
factored into first- and second-order factors. 

Even within the choice of first- and second-order sections 
some llexibilitv remains. For a direct form implementation of 
a pole pair as shown in Fig. |(a) the coefficients are — r2 and 
2r cosö. For a given quantizalii n on the coefficients the poles 
must lie on a grid in the : plane defined by the intersection of 
concentric circles, corresponding to quantization of r- and 
vertical lines, corresponding to quantization of 2r cos 0. Such 

a grid is illustrated in Fig. S(b). An alternative realization of 
a pole pair is the coupled form proposed by Kader and Gold 
[15], as shown in Fig. '){n). In this case the coefficients are 

T cos 6 and r sin 0 and consequently the poles must lie on a 
rectangular grid as illustrated in Fig. 9(h). We note, for ex- 

ample, that for a given coefficient word length the direct form 
permits more accurate placement of poles with r close to unitv 

and 8 large while the coupled form is more advantageous for 0 
small. There are, in theory, many other structures in addi- 
tion to the direct and coupled forms for implementing pole • 

If 
—t-       -         JL. 



■■ ■■' -- ■!■ 

966 

«y(nl 

IM 

H» f.    (a) Direct form im„l..nu:Mtati.,n „I a „nl.- „„ir. 
(b) GtM ol all.mal.lr p„|,- positions    -liavt lol in. 

pa.rs altlmuKh toy a,v UM mo* .„„„nonlv ClMHfakrad llöl 
1 .tlfn.nt stru.lurfs. ol eotme, imply ditfen-nt Kri,ls in the, 
Plane ami KtMUTallv i. is a.lvanta^.us ,„ choo« a .struCnv 
for wlmh tkc «n.l is dtMe in tlu. ragion „f ,|u., pUne^hm 
tin- poles are to be locatet 25 

With a Riven choiee of strmlnre there remains the ,mes- 
t.<.n as to how the pole locations on the grid shouhl l.e chosen 

A common promlure is to truncate or round the ideal coeffi- 
cents An alternative use.l l.v Avenhatts and Scln.ssler Il7| 
and also hv StelfHtl |l8] is to search over the ,rid in the vi- 
c">ty of the uleal pole locations to select a grid point which 

local > mmumzes the n.aximun, error in the filter frequency 
response. As an alternative to the „se of cascade or parallel 
connections of hrst- and second-order sections, more «eneral 
hlter structtires can l.e considered. Digital wave (liters, as 

proposed l.y Fettweis 10] and investiKate.i l.v Hin.ham [»] 
and by Croch.ere [llj appear to have much less sensitivitv 
to parameter inaccuracies than the cascade form 

It would, of course, he desiral.le to incorporate the con- 
stramt of ..uantized coefficients into the (|esiKn of distal fil- 
ers For nonrecursive filters, algorithmic design falls within 

the framework of integer linear proKrammin«. For recursive 
filters, however, the equations become nonlinear. In Keneral 

the development of desiKn procedures with .p.antized coeffi- 
cients remains an important area of research. 

IV. FiKECTs oi- ARITHMETIC ROIM.OII |M I„K pjr^ 

• 1.   Inlrodiiction 

The FFT algorithm [22] for computing: the discrete Fou- 
rier transform (DFT) plays a central role in many signal pro- 
cesSinK  applications   [2.3].   As  with   the  implementation  of 

I'KOtT I IJINOS r)K  IHK IKEK, AfOlST 1972 
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(b) (,II,| oi allowable pole positions    coiiplcl lonii. 

'IlKital filters, it is important to understand the elfect of finite 
register fefflfth arithmelic on the performance of the algo- 
rithm. 

There ate many form, of the ITT ■tgoritbm and the de- 
tailed ellecls of (pianlizition will diller dependinj. onfthe 

form used. The most commoi ly used forms of the aluorilhm 
are the radix-2 forms for wind the size of the transform com- 

puted is an integer power of two. For the most part, the dis- 
cussion l.elow is phrased in ter ns of a particular form of the 

radix-2 FFT. commonly rcferml to as the decimation in time 
form of the algorithm: the resulh however are applical.le with 

only minor modification to the ,1. imation in fretpiency form. 
We feel that most of the ideas employed in the error analysis 
of the radix-2 forms of the aluoritlm can l.e utilized in other 
forms such as mixed radix, etc. 

Our approach in analyziiiK "oise in the FFT is l.asical' 
•statistical. In most cases, the predictions of the models a.e 

supported with experimental data (from Weinstein [24] un- 
less otherwise stated). For lofttfog ami block lloatiuK point 
arithmetic, in order to simplify the analysis and obtain con- 

crete results, it is convenient to assume a simple, white-noise 
model for the siKnal being tramformed. Discussion of how the 
results might be expected to change for other types of signals 
is included, as are experimental noise measurements on FFT's 
of nonwhite signals. 

B.  The FFT AlRorithvi 

The  FFT algorithm is directed toward computing the 
DFT of a finite duration sequence/(«), defined as 

,  ..i...... .. .- - ■ MMk ' 
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A (low chart ifepictiat the FFT ktforithn fur .\' = « = 2:, is 
shown in Fi«. 10. A spicitic (luinialion in time algorithm is 
ili'pictfd. (An implenifntalion of this partiiular form of the 

aluorithin was used for the reported fxpcrinu-ntal work.) 
Some key aspects of this diagram, \vl ich arc coninion to ail 
standard radix-2 alKoritiuns, arc as follows. The DFT is com- 
puted in c = loj;.; X stajjes. At each staue, the algorithm passes 
through the entire array of A complex nnmhers, two at a 
time, fenerating ■ new .V nnmlicr arra\ . The rth array con- 
tains the d-sired DFT. The lu.sic numerical computation 
operates on a pair of numhers in the (M I l)th arra\-. This 
computation, referred to as a "butterfly* ia 

X,„.i(i) = \Ji) + ir.v ,„(;•) 

^•nO) = Xmit) - ir.v,„(,/). (si) 

Here, .Vm(j) and A',„i /) repr fsenl a pair of numhers in the Nth 
a.ray, and If is some appropriate integer power of IT, that is 

If = H> = g-*" v. (52) 

The form of the butterfly computation is actually somewhat 
different for a decimation in fretiuency algorithm, where the 
computation is 

A',„.,(/)  = \Ji} + XmUi 

A'„,,i0) = |A„,(/) - .V„,(./) |ir. (M) 

At each stajje, N 2 separate luitterlly computations are car- 
ried out to produce the next array. The integer p varies with 
i,j, and m in a manner which depends on the specific form of 

the FFT algorithm that is used. Fortunately, our analysis is 
not tied to the specific way in which /> varies. Also, the specific 
relationship hetween ;, /, and vi, which determines how we 
index thrmiKh the wth array, is not important for the anal- 
ysis. The details of the analysis for decimation in time and 

decimation in frequency differ somewhat due to the different 
butterfly forms, but the basic results for the dependence of 

noise-to-siKiial ratio on A^ do not change siunilicantly. In our 
analysis we will assume a butterfly of the form (51), corre- 
sponding to decimation in time. 

('.  f-'h'T Roundoff Xoise with Fixed-Point Arilhmelic 

We will model the roundoff noise by associating an inde- 
pendent white-noise generator with each multiplier. This 
means that a noise source feeds into each node of the signal 
Mow uraph of Fin. 10 (excludiiiK the initial array of nodes, 
since we are not considering A I) noise here). Since we are 
dealing with complex multiplications, these elemental noise 
sources iire complex. Defining the complex variance ff/(2 as the 
expected squared magnitude of such a noise source, we have 

an - = 4 
2 ■" 

12 
(54) 

where it is assumed that each of the four real multiplications 
used to perform the complex multiplication is rounded sepa- 
rately. In Fin. 10) ^X8 = 24 such noise sources must be in- 
serted. To add the effects of each of the noise sources in eval- 
uating the total roundolf noise in the output, v.e note that the 
transmission function from any node in the How !;raph to any 
other connected node is multiplication )y a complex constant 
of unity magnitude. Since we assume that all noise sources are 
uncorrelated, the noise variance at any output node is equal to 
air times the number of noise sources that propagate to that 
node. The general result which is easily verified for the case 
A' = 8 by inspection of Fi^;. 10 is that (A"—1) noise sources 
propagate to each output node so that the outpul noise vari- 
ance (TK

1
 is given by 

9Bl = (V — l)(T/r' 

which for large H we take as 

an'     ' A an1. (55) 

According to this result, the variance of the output noise is 
proportional to .V, the miniber of points transformed. The 
effect ol doubting A', or adding another staue in the FFT, is to 
double the output noise variance. Uring the assumptions we 
have made thus far about the noise generators in the FFT (all 
uncorrelated, with equal variances), the output noise is white, 
i.e., the .V noise samples I'Ak) are mutually uncorrelated, with 
Independent real and imaginary parts. This follows from the 
fact that the output of any butterfly it white (two outputs un- 
correlated with equal variance, real and imaginary parts 
uncorrelated) if the input is white. Since the noise sources in 
our system are white, and ail connected to the output via 
some combination of b itterliy computations, the output noise 
must also be white. 

In order to simpl'fy the analysis leading to (55), we have 
neglected some details. First, we have associated equal vari- 
ance noise sources with all multipliers. Including where 11'= 1 
and /'. In many programmed FFT's these multiplications are 
performed noiselessly. If we assume in the analysis that these 
multiplications are noiseless, the output noise variance will no 
loafer be uniform over the output array. For example, the 
zeroth output point would be noiseless. The average variance 
over the output array will be somewhat lower than the result 
in (55), but will retain a linear dependence on A'. Second, the 
assumption that all noise sources are uncorrelated is contra- 
dicted by the fact that the two noise sources associated with a 
given butterfly are negatives of each other, and therefore com- 
pletely correlated. This does not affect the result for output 
noise variance, since the two outputs of a butterfly connect to 
a disjoint set of output points. However, it implies that the 
output noise samples Ei,k) are somewhat correlated. These 
details are worth mentioning, but not worth analyzing here at 

1 

- 

tf 
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lennth, iH'iause they rloiiil UM Msential ideas of the analysis, 

are quite proHrain-depeiulent, and do not ckuye the essential 
character nf the (le|iendence of iiiean-s(|uared output noise 
on A'. 

In ini|ilementinK the FFT with fixed-point arithmetic we 
must insure against overllow. From (51) it follows that 

max [ | .Y,„(i) | , | XmUi | 1 

< max || .V,,,.^/)!, | .Ymil(./)1 |    (56) 

and also that 

maxll.Y».,^/)!,  I.Y,,,,,^)]! 

< 2 max | i .Vm(i) ■v»(;) (57) 

Equation (56) implies that the maximum modulus is i.on- 

decreasing from staue to stage w that, if the magnitude of the 
output of the FFT is less than unity then the mannitude of 
the points in each array must lie less than unity,1 i.e., there 
will lie no overflow in any of the arrays. 

In order to express this constraint as a liound on the input 
sequence, we note that the maximum possible output can In- 
expressed in terms of the maximum input as 

.v-i 

X{ k) 1 „l:,x < I X(H) \,tmx £  | IF"*- j   = .V | x(„) I,,.,,,.     (58) 

Thus lioundinn the input sequence so that 

xin) I   < 1   .V (59) 

will prevent overflow. To obtain an explicit expression 
for output signal variance, we assume *(«) white, with 
real and imaninary parts each uniformly distributed in 
(-Ix 2.V, 1   x 2.V). Then we have 

ff.v2 -   TO)P =  flV.» =  .V' .l(»/)   = = 

Combining this with (55) yields 

1 

.vv 

»J - .v\ rm' 
TV 

(60) 

(61) 

The assumption of white input signal is not critical here. For 
example, if a complex sinusoid.v(«) = (1 .V) exp 7(27r/('ii« .V+^y 
had been selected o>;2 (T.v2 would still be proportional to A'2, 
which is the essential point of (61). 

• ■.(Illation (57) suggests an alternative procedure for pre- 
venting overflow. Since the maximum modulus increases by 

no more than a factor of two from stage to stage we can pre- 
vent overflow by requiring that |x(») <1 and incorporating 
an attenuation factor of 1 2 at each stage. Fsing this step-by- 
step scaling, the attainable output signal level (for white 
input) is the same as in 160) since the output signal level does 

not depend on where the scaling is done, but only on how 
much overall scaling is done. However, the output noise level 
will be much less than in (55) since the noise introduced at 
early stages of the FFT will be attenuated by the scaling 
which tal.es place at the later array. Quantitatively for .V= 2' 

1 Actually mic slioukl disciiss ovrrtlow in Irims of the rr;il ;iii(! ini^pi- 
nary part» of tlic data, ratlicr than the Wgnllllltl Ilovv.-vcr, |«] <l 
implies lliat Ke (x) <I and | Im (x) \ <1, and only a slight increase in 
allowable signal level is aelneved tiy sealing on tlic basis of Re and Im 
parts. 

I'KOCII DIM.S OK  llll. IKKK, Al (.1 Si   ly?.1 

V   I    J 

otr = an'1 2J 
t   I 

(62) 

where an" represents the roundoff noise introduced due to 
multiplication by II' and scaling and will consequently be 

slightly higher than an'1. In particular, if we assume that the 
scaling is accomplished with rounding, it can be shown 

an- =   - 2 '". 
6 

For large A, (62) is approximately 

at: r - 2 aif 

(M) 

(64) 

and thus is much less than the noise variance resulting when 
all of the scaling is carried out on the input data. 

Now, we can combine (64) with (60) to obtain the output 
noise-to-signal ratio for the case of step-by-step scaling and 
white input. We obtain 

ft' 

a.\- 
= bXan'- - (5.V)2-2!> (65) 

a result proportional to A, rather than to A"-. An interpreta- 
tion of (65) is that the mis output noise-to-signal ratio in- 
creases as A', or by half a bit per stage. This result was first 
obtained by Welch |25l It is important to note that the as- 
sumption of white signal is not essential in the analyj-is. The 

basic result of half-a-bit-per-stage increase holds for a broad 
class of signals, with only the constant multiplier in (65^ 
being signal-dependent. In particular, for a general input with 
scaling at each array, the ouiput variance is related to the 
variance of the input array by 

1 
a\- = 

so that 

J. rai1 

.V2 « 

(66) 

fM 

9XM 
(67) 

where, to reduce noise-to-signal ratio, we would like to make 
ff,2 as large as possible but are limited by the constraint 
|.v(«)| <1. The result (67) has been verified experimentally 
for both wide-band and narrowband signals |24].  [2S]. 

We should also note that the dominant factor causing the 
increase of (7>;2 (T.v2 with N is the decrease in signal level 
(required by the overllow constraint) as we pass from stage to 
stage. According to (6.1) and (64), very little noise (only a bit 
or two) is present in the final array. Most of the noise has 
been shifted off by the scalings. However, the mean-squared 
signal level has decreased by a factor of 1 .V from its initial 
value, due to the scalings. Our output consists not of the DFT 
defined by (50) but of 1   A" times this DFT. 

We have assumed straight fixed point computation in this 
section, i.e., only preset attenuations were allowed, and we 
were not permitted to rescale on the basis of an overflow test. 

Clearly, if the hardware or programming facility are such that 
straight fixed point must be used, we should, if possible, incor- 
porate attenuators of 12 at each array ri.ther than using a 
large ; ttenualion of the input array. 

^^^ 
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Hg, II.    Ex|)erimentiil und thcorcticiil niiiw-tii-siKii.tl 
rutius for Mm k llo.itiiiK-poixt I'l' I. 

A lliinl approiicli to avoiding OVITMOW is tlif MC of block 
lloatin^; point. In this proti'duri' tlif orininal array is nonnai- 
bnd to the far k'ft of tin1 computer wort!, with the rcstriition 

that |.v(»)! <'; '''I' coiiipiitatinn prort'i'ds in a hxftl point 
maniu'r. exii'pt tliat after every addition there is an overflow 
test; if overflow is detected, the entire array is shifted rinht 1 
liit and the computation continues. The nuinher of necessary 
shifts arc counted to determine a scale factor or exponent for 
the entire final array. The output noise-to-sinnal ratio depends 
strongly on how many overflows occur, and at what stages of 
the FFT they occur. The positions and timing of overflows 
are determined hy the signal being transformed, and thus, in 
order to analyze noise-to-signal ratio in block floating FFT, 
one needs to know the signal statistics. This is in contrast to 
the fixed point analysis above, where it was not necessary to 

assume specific signal statistics. 
The necessary number of right shifts of the array is related 

to the peakiness of the DFT of the signal being transformed. 
If the constant signal .v(w) = l or the single-frequency input 

.v(«) = e\\ij(2ir .\')k„n is transformed, the output (with k„ an 
integer) will consist of a single non/ero point and (for .V = 2') v 

scalings of the array will be necessary, one for each stage. 
A reasonable case to examine is the case of a white input 

signal; the DFT of a white signal is white, and one might 
expect (sin.e the spectral energy is spread) that scalings at all 
stages would not be necessary, and a noise-to-signal ratio 

advantage over fixed point would be gained. This problem 
can be analyzed theoretically |24| but the analysis is quite 
involved and will be omitted. Instead, we will present some 
experimental results. 

In Fig. I1 experimentally measured \ allies of output 
noise-to-signai ratio are presented for block lloating FFT'sof 
white inputs, using rounded arithmetic. The quantity plotted 
is (VB

2
 2^*o■TJ)"■2, the rms noise-to-signal ratio. For com- 

parison, a theoretical curve representing fixed point noise-to- 
signal ratio (for rounded arithmetic) is also shown. We see 
that for \.hite input block lloating point provides some ad- 
vantages over fixed point, especially for the larger transforms. 
For iV = 2048. the mis noise-lo-signal ratio for block floating 
point is about 1 8 that of fixed point, representing a .^-bit 

improvement. 
An experimental investigation was used to examine how 

"•[»«„♦.(il] +"m('' 

Im [*J<] 

t 

♦•-(*) 

RiW 

Kig. 12.     Noisy butti-illy comiiuUition (rioatiiit; paint). 

the results for block floating point change, when truncation 
rather than rounding is used. The results of this experiment 
are also shown in Fig. 11. Noise-to-signal ratios are generally 
a bit or two worse than for rounding. The rate of increase of 

noise-to-signal ratio with A' seems to be about the same as for 

rounding. 

/).  FFT Roundoff Noise with Floaliiiz-Poiiil Arilhmelic 

The effect of arithmetic roundoff with floating-point arith- 

metic has been analyzed theoretically and ixperimentally by 
C.entleman and Sande |26], by Weinstein [27], and by 
Kaneko and Liu \2»]. As with the statistical analysis of 
roundoff errors with fixed-point arithmetic, noise is intro- 
duced due to each butterfly computation. As with floating- 
point errors in digital filters, we neglect second-order error 
terms so that noise sources arc introduced after each mult:- 
plication and addition that are assumed to be white but for 
which the variance is proportional to the variance of the sig- 
nal at that node. Unless the input signal is assumed to lie 
white, the analysis becomes quite complicated due to the 
variation of the variance of the signal and therefore of the 
noise sources within each array. Kaneko and Liu have ob- 
tained detailed formulas for a general stochastic model of the 
input signal. W'e will confine attention here to the case of 
white input signal, where the signal at any array in the FFT 
is also w hite. with constant variance across the array. 

In Fig. 12 a typical butterfly computation (only top half) 
is indicated, including the noise sources due to multiplication 
and addition. The assumption of white input signal implies 

that 

| Re (JT.)]1-  |lm (Xm)Y-= i \X, im 
and application of our floating-point noise model as in Section 

1II-D yields the noise source variances 

rJ + »** - '-* + "'s2 = *-* ■ »«i* " ri ^2i -V-i'2    (*•) 

»„■ = a,' i .Vm | (70) 

^Mtta ■^ 
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Tin' variwwa <if ihv tomftu MIM wmrct rm = »m+^Vm is tlu'ii 

rM!J = 4<r.ji.Y, (71) 

so that the variaiUT of thf noisf ni'iuratt-d in conipiitin^; the 
(m+l)tli array is ig,* tinu's t' c \ariaiui' of the signal in the 
mtli array. If the input (/froth) array is white noise with 
variance (Ti2 then the noise nenerated in tile (»H l)th array is 
2"CTJ-(4a,s). If a,,,,,'- is the output noise due to the noise |M- 
erated in the (« f l)th arra> , tiien 

fm* = 2'   ,"'H,2"'a,-(4<7.-) = l.Xa.-a,-. (72) 

Sinee the noise neneratetl in each array is assumed to lie inde- 
pendent, the total output noise \ ariaiue (T/.;2 is 

a/.;2 = 2v.\a,-ar-. (7.?) 

By noting that the output signal variance is related to the 
input signal variance hy 

a.\- ■   W,- 

the residt follows: 

air 

tx 
=  lcr,-v 

(74) 

(75) 

A further result, which can be derived from our model, is 
an expression for the final expected output noise-to-si(;nal 
ratio which results after performing an FFT and an inverse 

FKT on a white signal xln). The inverse FFT introduces just 
as much roundotT noise as the FFT itself, and thus the result- 
ing output noise-to-sinnal ratio is 

Ttr 

a*1 
4a.- (76) 

or just doulile the result in (75). 

In order to see the implications of (75) or i76) in terms of 
register length rerpiirements. it is useful to express these 
results in units of hits. We use 

(ff/r (T.v'-'i,2) bits =  \ log] (2v) (77) 

to represent the numlier of liits by which the mis noise-to- 

si^nal ratio increases in passinu through a lloatinj; point FFT. 
For example, for pal this represents 2 hits and for c = 11 it 

represents 2.2.^ hits. The numhei of hits of mis noise-to-sinnal 
ratio increases as logi (logi A'), so that donliliiiK the numher 
of points in the FFT produces i very mild increase in output 
noise, sinniticantly less than the half-hit-per-sta^e increase 
for fixed-point computation, .n fact, to obtain a half-bit in- 
crease in the result above, we would have to double i-, or 
scpiare .V. 

In the analysis leadii'H to (75), we have not considered the 
fact that multiplications by 1 can be performed noiselessly. 
For a specified radix-2 algorithm, such as the decimation in 
time algorithm shown in Rg. 10, these reduced variances for 
(T' = 1 and 7 can be included in the model to obtain a slightly 

reduced prediction for output noise-to-si^nal ratio. However, 
for reasonably large -V, this modified noise analysis yields onlv 
slightly better predictions of output noise than does (he 
simplified analysis above. 

A conseipience of our analysis leading to (75) is that the 
output noise is white. This follows from the fact that each 
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array of noise sources is white. The reduced noise source vari- 
ance for IT' = 1 and./ implies that for some arrays there will be 
a variation ol noise source variance over the array. This im- 
plies a slight variation of output noise variance over the out- 
put array, and thus our inodilied noise analysis will only pre- 
dict an average noise variance ov or the output array. 

The results discussed above have been verified with excel- 
lent agreement as shown in Fi«. U(a) and (b). To obtain this 
aureement, however, it was necessary to use randomized 
rounding, i.e., randomly rounding up or down when the value 
of mantissa was exactly  (1   2)2-b. The modified theoretical 

--   n   '   ;• 
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Fi«. 14.    Kxpfrimental noisc-to-sisnal ratios for Hoatinn point KKT and 
KFT invi-rw KKT; truncation usi-d instead ol roundinK. 

ewvt shown was obtained by taking into account reduced 
noise source variances for l?=l and \l=j. Also shown are 
experimental results for nonrandomized rounding. These 
results were fitted empirically with a curve of the form av*, 

but this quadratic dependence was not established theo- 
retically. Noise-to-signal ratios were also measured for the 
case where truncation rather than roundinj; was used ip the 
arithmetic; the results, with empirically fitted quadratic 
curves, are shown in Fig. 14. 

Our analysis, and all the above experiments, applied to the 
case of white signal. Some experimental investigation has 
been carried out as to whether the predictions are valid when 
the signal is nonwhite. Specifically, the noise introduced in 
computing an FFT was measured for sinusoidal signals of 
several frequencies, forv = 8, I, 10, and 11. The results, aver- 

aged over the input frequencies used, were within 15 percent 
of those predicted by (75). In these experiments, the "ran- 
domized" rounding procedure was used. 

E. Effects of Coefficient Quantkaiion in the FFT 

As with the implementation of digital filters, the imple- 
mentation of the FFT algorithm requires the use of quantized 
coefficients. While a completely definitive study of the effects 
of coefficient quantization in the FFT remains to be done, two 
approaches have been pursued for which some results have 
been obtained. 

Although the nature of coefficient quantization is inher- 
ently nonstatistical. Weinstein [24] has obtained some useful 
results by means of a rough statistical analysis. This sta- 
tistical analysis corresponds to introducing random jitter in 

the coefficients and determining the output uoise-to-signal 
ratio due to this noise. While the detailed etlect due to coeffi- 
cient error due to quanlization is dilferent than that due to jit- 
ter, it is reasonable to expert that in a gross sense the magni- 
tude of the errors is comparable. 

To develop this statistical analysis, we let Fik) denote the 
DFT of a sequence/(«) and #(») the result of tra.,sfor.ning 
Kn) with a radix-2 FFT algorithm with jittered coefficients 

Then 

and 

H%) - Z/i'/nu 

«ni 

(7«) 

(79) 

Because of the form of the FFT algorithm each element S2„ 
will be a product of p = log., .V quantized coefficients. Thus 

where 

iu = II (ir- + «,) 

II IF- = II"* 

(80) 

(HI) 

with h bits for the real and imaginary parts of each of the 
coefficients, excluding sign. \^\ is less than or equal to 

(\ 2)2 6. If we assume that the real and imaginary parts of 
the jitter in the coefficients are uncorrelated and uniformly 
distributed between plus and minus (1 2)2-6 then t^2. the 
variance of «, is a,'= 2-* 6. The error in the computation of 
the DhT can be expressed as 

.v-i 

/•-(*) = /'(*) - h\k) =  Z/HdU - IF"*).     (82) 

From (80) and (81) we can express the factor (J2„t- IF"*) as 

(i2„, - IF"<) = £ Ä, II IF". + higher order t-rms.   (83) 
i-l        ;-l 

If we neglect higher order error terms, and assume that 5, 
are mutually uncorrelated then the variance of (l]„t-H>*) is 
equal to *(Tr*t 6). Finally, assuming that all elements iU are 
uncorrelated with each other and with the input signal, the 
output error variance a«2 is 

2-2* .v-i 

E l/(«)l2. OK' = v (84) 

Since from Parseval's relation 

Z l/(«)l2 = m 
= mean-squared output signal      (85) 

the ratio of trean-squared output error to mean-squared out- 
put signal is thus 

''/[(m^)]-® (86) 

Although we would not expect (86) to predict with great 
accuracy the error in an FIT due to coefficient quantization, 
it is helpful as a rough estimate of the error. The key result of 

(86), which we would like to test experimentally, is that the 
error-to-signal ratio increases very mildly with Ä, being pro- 
portional to r-klfi .V, so that doubling A^ produces only a 
slight increase in the error-fo-signal ratio. 

-gkÜHIMMi 
iMHiM^i**M 
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l-'X   15.     ICrrors iln,- t,, nwlHchul (iiMiitiAai.m in KKT. 

I" tfst this result, fxiuTiiiuMital mMwcneati .in crran 
due  (o eoeAden«  <llianti/ati„n   Wtn  uuuh:   In  carl)   run    a 
■Miiimoe/(») white in the mm that all i.v ml nanben 
BMUng up tkc A-p iai compk» wquctice wen mutuallv un- 
cnHatcj, utth /.TO means, an.l equal variances was ob- 

tamed ustnn a rand.un numlier generator. TWi se<|uenre was 

transfi.rmed twice, .„tee UM,^ a ,?f,-l,it cwftcfetri talile, a.xl 

onee us.,,« a enelluient talile munded to much shorter word 

l'i'Kth (e.R., 12 hits). K.ireaeh translorn), ,U)-liit aeeuraev was 

used n, the anthnutie to make the etlr.t of rnund.ilT error 

OefHgiWe. I he results were sul.l, aetr.l, square.!, averaged 

over the outpul arra;,, and divide.! I.v the output signal 

variance  < .\   times  the  input  signal   variance)   to olitain  an 

nperimental output error-tMlp«! ratio. Par each value of 

W, several random se.pieices were translorme.l and the re- 

sults were averaged to ol.tain statisticaüv convergent tsti- 
niat'>, 

'i.iesen.sultsarciisplaye.lin |% 15; thequantitv  plotte.l 
■sff,;-  2   'ar- where <7f2 (, ,]„, ,„,,„,^,,^,,.,,,1 mitpa{ ^^ M 

defined in (M). The theoretical curvecorreepondlng to (86) is 
shown, and the circles represent measured output err.ir-M- 

sinnal ratio lor the lixed-point me. We note that the experi- 

mental results generally lie hejow the theoretical eurve \o 

experimental result diffen In as much as a factor of two from 

the theoretical result, and since a factor of two in „I „t ,,,.■- 

retpondi to only half-a-i.it dUTerenee in the mis output error 
>t seems that (86) is a reasonahly accurate estimate of the 

effect "f COeffidenl errors. The experimental results do seem 

to increase essentially linearly «ith r. Inn with smaller slope 
than given in (86). 

In   the above,   Ixed-poin«  arithmetic  has  been  assumed 

"owever. since a Mock (loatinK-point FFT will generally use 

ixed-pomt coeldciots, our results are valid for the l.lock 

Boating-poiat caw also. With some sli.;ht mo.liCcalion.s, it is 

possilile to obtain similar results for the ll„atin„-,,oi„t case 

txcept for a constant factor, the tloatim;- and bed-point 

results are the same. Experimental results for the Boating. 

POIIM  ease are represented by the solid dots in  Fig.  15   and 

I'KDCI laiiscs M |HI. ,,.,.,, A1.(,,.s.| m7_, 

are ol.served to lie sliKhtly lower thae the results for the fixed- 
|»uiMt fast*. 

A dilferent aoproach to the characteri/ati if Kj-T coelh- 
nen,   .,,,,,,  i        ..^   ^   ^ 

^.sier|29|. In Uieir analysis,he ellect of coeliicientquaiiti.a- 

-"- reprepte.! in ternis ol the level of spurious sid. lohes 

^.^■P**^.«-«!«««/^)-^--«.) where 
Y"   ,l,',;i',l7! '''■'' saniple, has a I)|.T with a purelv sinus- 
OMM real and imaKinarv  part, i.e., 

/•(*) -  ll-".' (87) 

^ ll''' i^'rse l)|.T of /^., sll,,lll(|, of course, have o.ilv a 
■ngle  nonmo component.   Due  to t Kdenl  .|uanti/a,i..ii 
however, the DITol.taine,! is 

P(k) (88) 

•'"1 since the real and .ma^iiarv parts are not exactlv sinu, 

"'''•'^''•■'"verse nn, with exact coeriuients, of /.•(^ wi 
h«ve spurious components. For each of the set of .V scuence 

II 
■es 

/»{»)  -  ll„(ll -  Mi 
• - 0. I, • • •, .V - 1.    (89) 

T-fts */ ./.compute the DKT with .p.anti.e.l coeflicients fol- 

bwd l.y tl).. inverse DFT with accurate coeflicients. A, the 

^tl^"'T?l?fT'the«i»*«>h«iue«cylocatlS 
"'   the  spurious  sidelohe  components  produced  due  to  the 

'l^intl.ed coelln tents are „liservcd.  Since anv  function  r(„) 
can In- constructed as a weighted sui 

v    1 

(90) 

lH' spurious stdelolies produced for any/o,) ean in principle 

''^'-'••'"'''led l,y c.nnhii.in, the responses due to a set of im- 
pulses. Hut carrying out sud, . comWnation is „ot practical 

or arlmrary/(,,). Tufts ,/,,/. have, however, tal.ulated the 
Wane side   il.e levels encountered for ..„>/,(„) as , fllm,i(,n 

Of the "Uiulier of bit. retained In the .oeflicients, for the case of 

•' "4-pant  I-1' I   and rign-magnltlMle representation of coefti- 

V.   Iv.XAMfi i:s 
.1.   Inlroiliirlion 

I'>ll,n'''''''li^ sections the effects olarithnu.tic roundoff 
have been analyzed for simple , first- ami second-order) dfcital 

'--''I •'-n-T. These algorithms are the basic U •;,■:' 
Wockl in more complicated digital processini; such as a higher 

'.rder .h.ttal filter or a cmvolutional filter realized via the 

*¥T.  Kxamples will be presented in this section „, indicate 

-w some of the ideas developed aliov e can lie applied to ana- 
lyze and to .W the ,nost advaatageoui configuration for 
such systems. I he Urs, two examples concern the realLation 

ol Ugher order recursive filtert and have borrowed from the 

"-rk of other authors. The third example deals with an KKT 
tiller. 

B.   /•■/.vr,/-/>„/),/ /,,<„„/ fffer i„ Csauh- „ml P,„alM For,,, 

After a digital filter has lieen specilicl in terms of its poles 

an.l zeroes, and the type of arithmetic has heen selected ■ 
'■'""'•'■must still be made anion^ the various possible c.'in- 

hKUranons of ,1,. Ii|,er vvDich will differ with respect to the 

effects of roundoff noise. An exhaustive studv of the selection 

-^ ■ 
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Pig, Id     Sin mi |.i mlcr HCtkn witli pulrs ptceccUafl IHM Uwd .n Jark- 
s.m's II' iiarallil lurni witli uj = 0. AI-KI used in 1/1 ilirn t tor». 

y(nl 

Ki«.   I".    Sivcinil-orili-r «vlioii willi lerot pivi« .liiiK polca,  I'siil in 2/' 
parallel H>tm «ilh u-i-O. Also umd in 2/' 'lin-.i Imin. 

nf filter form is beyoad the Kope ol t!iis paperi but in exceileni 

example ol the necMMry coneideratioM is given by Jadnon 
[30] i.i liis aiKilvMs ol nmmldil' imisi' fur lixed-point distal 
tiltfrs realized in caacade and parallel I'nrin 

Jaduofl (■(insiders twn parallel furni reali/aticms; the  1/' 

form where tbe individual ■ccond-order KGtioni are realiaedi 
a> ihown in Fig. Id. with the piles preceding the teroa, and 

the 21' form where aeroi precede polei In the individual sec- 
tiuns. as SIMWH in Rg, 17. (Fifa. 16 and l7doii.it iho« all the 

scaling coeffidenta needed to prevent overflow.) Hia analyaia 
indicates that for a variety oi ending criteria (baaed on dii- 
ferent /.,, norina*oi the input dgnal) and for varioua meaaum 
nf tlie diitpnt imise (such as it- total poW< r, or it- peak spec- 

tral value), the output ligiial-to-ncjae ratio-, of the two forms 

are very close. Generally, ■ very riight advantage «ill be 
gained with the IP form. 

Compariaon of the two parallel forms liasically reduces to 
a comparison of the noise properties of the two forms of 

ond-order sections, since the Doiaea from the second-order ; 
tions are simply additive in the output of the parallel form. 
Hence tile discussioii above applies to a comparison of second- 
order section realizations. Another form of second-order s( c- 
tion which could he considered is a coupled form as shown in 
Fin. it- For the case (ii = r cos 0, «. = r sm Ö, tiiis filter has 
poles at z = re"'' and a zero at »»f cos 6. The coupled form 

noise-to-sij;iial ratio has heen compared [24| to ratios for 
forms essentially the same as those in Figs. 16 and 17 for the 

sec- 
sec- 

»If 

(-*£•) 
represents the Fourier trans orm of a signal or of a tiller imimlse resiionse 
fin), then the correspond' 'g /,,, norm is 

'I— I    IWrtPfcl 

hin. 1".    Coupled tonn for second-older s<ition. 

case of white-noise input and an ahsohite overflow constraint 

(through the type of analysis given In Sectfon III-C). The 
coupled form was found to have sulistautialh lower noise-to- 
sisiial ratio for lilters with high Hi»'" and low resonant fre- 
ijuencies. For 5 = 1 -r, and 5«1, the results varv U 

a,- 
>■ 1  6-sin'-'0 (forms of Fi«s. 16 and 17) 

a,.- 

a«1 
1 o- (coupied form). (91) 

where u, denotes samplliiK freqiieiui 

The implicalion of this nstill. together with the somewhat 
reduced coelticient sensiti\it\ for the coupled form, is thai 
this form m ly he a nood choice in some situations, despite the 
fact that its iinplementation rt^piires four niultipli( atioiis 
inatead m three for a pole pair and a single zero. 

As stated above, Jackson found not rmch difference be- 
tween the noise properties of the 1/' and 21' parallel forms. 
However, the situation is toon interesting in the case of the 
cascade form. Here lie linds that targe dilferences are possible 

between the roundotT noise OUtpttU of the 1/' i poles before 
zeros in individual MCtiona) and 21) (zero.- before poles in 
each section) forms. Also the ordering of the sections and the 
pairing of poles and zeros have importanl effect on the output 
si^na'-lo-noise ratio. Jackson's analyses lead to several rules 
ol thumb for selection of 1/) or 2/', for ordering of sections, 
and lor pairing of poles and zeros. 

In general, the choice of configuration depends on which 
Lp norm of the scaled transfer functions is constrained to pre- 
vent overflow and on which Lr norm of the output noise spec- 
trum is used as a measure of performance. Two /.;, constraints 
on the filter are of particular interest: the ,*>= ^ case, where 
the peak value ol the transfer function to each possible over- 
flow node is constrained; and the p = 2 case where the rms 
transfer function to each node is constrained. The choice 

p = ■ is just slightly less stringent than the absolute overflow 
constraint (7), and prevents overflow even when the input is 
a narrow-band signal at resonance of the relevant transfer 
function. The /> = 2 constraint is more appropriate for prevent- 
ing overflow when the input is vvi 'e-band in nature. Two Lr 

norms on the output noise spectrum are of particular interest: 
the r=l norm which measures the total output noise power, 
and the fmtt norm which measures the peak value of the 
spectrum of the output noise. 

With regard to selection of 1/) or 2/) forms, Jackson's rule 
of thuinb says to select  \l) when /> = 2, r=x  and IP when 

-   * 
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/>- *, '=1; f.pr /. = 2, r = l and hrpmm, f.«, ..itlu-r lorni 
may be scltcltd. 

Thf ilu.icf o| ofdwiiif of nctioM »IM (lt|).-ii<i> on tka 
nonus which an- sclcctc.l. F« p = 2. r--= * , the sections sh.ml.l 

l>c ..r.l.Tcd in (iccrcasiiiK pnUnduM, wlwrc peakedness is 
ildincd as the peak «ain ..I a s.cli,,!! di\ided hy its nils lain. 

I-.ir p= x, r= 1, the sections should be ordered in increasiiiK 
peakedness. For £ = 2. r=\ and lor [>=*. r=* . the choice 
of orderin« depends on whether form IP or 1/) is chosen for 
the individual sections. Decreasing peakedness should lie 
chosen with form IP. and increasing peakedness with form 
1/). 

The ride for pairing of poles and zeros is as follows: Let 

i//„(u))| denote the magnitude of the lre.|iiencv response of 
the «th section, and .1/,, denote the maximum oxer m of 
\Hn(ui)\. Then the pairing should lie chosen such that the 
maximum over it of .1/,. is minimized. 

The aliove rules are illustrated In Jackson with a specific 
filter example -a sixth-order Thelivshev hand rejection filter, 
and the results are in accord with his rules. He analyzes the 
output noise of this filter for parallel forms 1/' and 2P nm\ for 
all orderings of cascade forms 1/) and 2P (with proper pole- 
zero pairing). Little difference is seen lutween the two parallel 
forms. For /) = 2, »• = x the peak output noise spectrum is 7-12 
dH worse for the 2P cascade forms than for the 1/) forms; 
while for /'=x, rmt, the output noise power is 7 12 dU 

worse for 1/) than for 2P. The effects of pole /en. pairinn and 
of ordering of sections also follow ip'ile well the rules previ- 
ously staled. The parallel forms turn out to lie slii;hlly supe 

nor to the best cascade forms with respect to roundoff noise. 

As Jackson indicates, these rules of thumb have certain 
qualifications and are not always valid, llowewr, they have 
l.een .hown to lie helpfnl in a variety of types of examples [it], 

('.   I'lioice of Form for F/oolinii-Poiiil Pi^ila! l-'illrr 

My means of an example. I.iu and K.meko [•] luve com- 

pared the direct, cascade, and parallel I, rm realizations of a 
floating-point digital filter. The filter selected was an eighth- 
order low-pass elliptic filler. The nois.-to-signal ratio for the 
parallel form was about 2(1 dB WOTM than for the direct form, 
while the cascade form was comparalile to laUiut 1.5 dB 
worse than) the parallel form. 

Various orderii^ of cascade form lloaling-point filters 
have not lieen studied in detail. I'rol.alily floating-point 
cascade filters are not too sensitive to ordering since large 
variations in signal level from stage to stage can lie accom- 
modated li\ the floating-point exponent. 

A comparison of the noise-to-si^nal ratio properties of 
floating-point second-order sections where poles precede 
zeros (Fig. 16) and where zeros precede poles (Fig. 17) indi- 
cates that at least for white-noise inputs the behavior of the 

two forms is essentially identical. For a high-gain second-order 
section of low resonant freipiencv. a coupled form realization 
yields some noise-to-signal ratio advantage over both of these 
two forms. 

D.  FFT Filler 

The results of our roundoff noise analysis for fixed-point 
FFT will now be applied to ohtain an expression for the out- 

put noise-to-signal ratio of a finite impulse response digital 
filter, implemented liy means of the FFT. The overflow con- 
straints of this type of filter will l,e accounted for in the analv- 

I'KOII IDlSos o|.   IH!   liai;. All.I ST W.' 

sis. Attention will lie focussed on a prototype low-pass filter 
with 256-point impulse response and a cmolT freiptency of 1 4 
the half sampling frecpiency. konnded aritlunetn .vill he 
assumed 

Let usexamine tin ha-ic steps in the tillering coinpulalioii. 
tracing the huildup of noise variance as we proceed. First the 
FF1 is used lo compute the DFT of a sectio i of input. I„ the 

implementation of a Idler with 2.S()point impulse response, it 
is reasonahle to compute a .S12-point FFT. where the input 
consists of 256 d •la samples and 256 zeros. Actually 512 real 
input samples would be treated simultaneously, liy placing 
sections of 256 real samples in both the real and imaginary 

parts of the input to the FFT. To guarantee against overflow, 
a scaling of 1 2 is needed at each stage of the FFT vielding 
an overall attenuation of 1 512. The samples of the input 
seipience must lie less than unity in magnitude. The noise 
Aid*) at the oiitpu'   if this first DFT has variance 

«vr = l /•■(*) !2 
(92) 

This noise variance is small. Iiecause most of the roundoff 

noise has lieen shifted off liy the attenuations. However, the 
scalings have also caused the me in-s(| tared signal lo decrease 
by a factor of 1   512. 

Next this computed transform is multiplied liy a sequence 
//(*) represenlin« the DFL of a 512-poinl sequence ((«) con- 
sisting of the filler impulse resoonse plus 256 zeros. This com- 
plex mullipliciMion introduces round,,If „oise of variance 
2 • I. Assumim; thai we have chosen Uilc'r <|, the mean 
square of the no-s- Si Lecomes reduced by 

1 

512 
Z    B(k) - = 0 m 

a ratio of the tiller lundwidlli t,, the sampling frequency, 
ihus after the mulliplicaiior, the variance of the total ndae 
E,(*) is 

2-Ji S 
«*:- -       + B - 2-:!,,. 

3 3 
(94) 

This noise is not wliite. Imt has a component vvhos.  spectrum 
has lieen shaped liy the tiller. 

For the example under consideration B« 1   4. so 

3 
vt.' ■) -2h (95) 

Note thai a,;- is slightly less than r*,' and represents onlv 
al.out a hit of noise. However, if the signal speclnim is flat. 
the mean-squared signal will also he reduced somewhat due 
to the multiplication liy H{k). 

Now an inverse transform is computed to olitai.i a section 
of output. The noise variance at the output of this transform 
depends on how many sellings are necessary in the inverse 
FFT. I» order to determine how many scalings are necessary, 

a bound on the OUtpUl of the circular convolution is required 
[33]. For a particular filter, such a bound can lie stated as 

W   i 

I v(») I < £ I hd) | (96) 
(-11 

where y(;/) is the output and .1/ is the k-ngth of the impulse 

—«   -1 
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n-spoiisi-. The pratOtypa liter lias u impwiM response 

*(•) 
250 

1     2! 
:+ E(-i)1- 

Iwkn 

25() 

2IK32)II 2»(33)« 
+ 0.7 cos - 0.225 ros 

256 25() 

+ 0.0199S cos 
2«(3J)fl 

56    J 

and 

£ | //{«) | - .U2. 

07) 

(W) 

Hence, only two scalings (at llie first two arrays) are neces- 
sary in the inverse transform. Then, in propagatinn through 
the IFFT (inverse FFT), the variance of the noise E-Ak) 
increases by a factor of 512 16. (The 512 represents the nain 
of the inverse DFT, and the 1 16 is due to the scalin^s.) 
The variance of the additional output noise E|(i) caused by 
roundotT in the IFFT can be estii'Mted easily via the method 
of Section IV-C The result is 

/512      512\ • 

V 8         4 / ft 

The total mean-scpiared out|nit noise is 

512 

2* = (202)2-•'(,.   (Q9) 

vhr 
16 

»*.' + »«,• = (22(})2--b 

or 'n units of bits of rms output noise 

| logi (2'-'V,.;-) = 3.91 Mts. 

(100) 

(101) 

The mean-scpiared output signal can be estimalfd if 
specitic statistics are assumed for the input signal xin). As an 
example, assume that xln) is white with variance crr-'=2 S, 
This variance goei through an attenuation of 1 512 in ilic 
first FFTi an attenuation of B = \ 4 due to multiplication bv 
Ilik), and a gain of 512 16 in the inverse transform. The 
mean-squared output signal is then 

Q0Q0=L   (,,,2) 

and the output noise-to-sii,'nal ratio is 

— ~ (22 000)2 -h. (103) 

Assuming an input noise-to-sit;i'al ratio (due to A I) noise) 
of (1 4)2 *, the noise-to-sinnal ratio has worsened bv a factor 
of about 5500, or 

i logi 5500 = 6.15 bits (104) 

in passing through the FFT filter. 
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